
About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Introduction, CUDA Basics

Jǐŕı Filipovič

Fall 2013

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors

We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is included

The class is focused on algorithm design and programming of
general purpose computing applications on graphical processors
We will learn:

design of parallel algorithms with focus on utilization of
programming model available in todays GPU

CUDA-based GPU architectures

programming in C for CUDA

tools and libraries

code optimization for CUDA

case studies

The class is practically orented – GPU is constant-times faster
than CPU, therefore besides time complexity, writing an optimal
code is important.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

What is expected from you

During the semester, you will work on a practically oriented project

important part of your total score in the class

the same task for everybody, we will compare speed of your
implementation

50 + 20 points of total score

working code: 25 points
efficient implementation: 25 points
speed of your code relative to your class mates: 20 points
(only to improve your final grading)

Exam (oral or written, depending on the number of students)

50 points

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Grading

For those finishing by exam:

A: 92–100

B: 86–91

C: 78–85

D: 72–77

E: 66–71

F: 0–65 pts

For those finishing by colloquium:

50 pts

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Materials – CUDA

CUDA documentation (installed as a part of CUDA Toolkit,
downloadable from developer.nvidia.com)

CUDA C Programming Guide (most important properties of
CUDA)

CUDA C Best Practices Guide (more detailed document
focusing on optimizations)

CUDA Reference Manual (complete description of C for
CUDA API)

other useful documents (nvcc guide, PTX language
description, library manuals, . . .)

University of Illinois textbook

available from
http://courses.ece.illinois.edu/ece498/al/Syllabus.html

CUDA article series, Supercomputing for the Masses

http://www.ddj.com/cpp/207200659

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Materials – Parallel Programming

Ben-Ari M., Principles of Concurrent and Distributed
Programming, 2nd Ed. Addison-Wesley, 2006

Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill,
Patterns for Parallel Programming, Addison-Wesley, 2004

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Moore’s Law

Moore’s Law

Number of transistors on a single chip doubles every 18 months

Corresponding growth of performance comes from

in the past: frequency increase, parallelism of instructions,
of-of-order instruction processing, caches, etc.

today: vector instructions, increase in number of cores

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Moore’s Law

Moore’s Law

Number of transistors on a single chip doubles every 18 months

Corresponding growth of performance comes from

in the past: frequency increase, parallelism of instructions,
of-of-order instruction processing, caches, etc.

today: vector instructions, increase in number of cores

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – paradigm change

Moore’s Law consequences:

in the past: speed of a single-threaded program doubled each
18 months

changes were important for compiler developers; application
developers didn’t need to worry

today: speed of prcessing of a parallel program having
sufficient number of processes/threads doubles every 18
months

in order to utilize state-of-the-art processors, it is necessary to
devleop parallel algorithms
it is necessary to find parallelism in the problem being solved,
which is a task for a programmer, not for a compiler (at least
for now)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Types of Parallelism

Task parallelism

decomposition of a task into the problems that may be
processed in parallel
usually more complex tasks performing different actions
ideal for small number of high-performance processor goals
more frequent (and complex) synchronization, usually

Data parallelism

paralellism on the level of data structures
usually the same operations on many items of a data structure
finer-grained parallelism allows for simple construction of
individual processors

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Types of Parallelism

from programmer’s perspective

different paradigm requires different approach to algorithm
design
some problems are rather data-parallel, some task-parallel

from hardware perspective

processors for data-parallel tasks may be simpler
it si possible to achieve higher arithmetic performance with the
same number of processors
simpler memory access patterns allow for high-throughput
memory designs

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivace – Graphical Computations

Data parallel

the same task implemented for each pixel/vertex

Predefined functions

Programmable functions

special graphics effects
GPU become more and more programmable
it is possible to implement also non-graphics tasks

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Performance

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Performance

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Summary

GPUs are powerful

an order of magnitude performance increase is worth studying
a new programming model

for full utilization of modern GPUs and CPUs, parallel
programming is necessary

parallel architecture of GPUs ceases to be an order of
magnitude harder to master

GPUs are widespread

cheap
lots of users have a desktop supercomputer

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Applications

Use of GPU for general computations is a dynamically developing
field with broad applicability

high-performance scientific calculations

computational chemistry
physical simulations
image processing
and others. . .

performance-hungry home and desktop applications

encoding/decoding of multimedia data
game physics
image editing, 3D rendering
etc.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Applications

Use of GPU for general computations is a dynamically developing
field with broad applicability

high-performance scientific calculations

computational chemistry
physical simulations
image processing
and others. . .

performance-hungry home and desktop applications

encoding/decoding of multimedia data
game physics
image editing, 3D rendering
etc.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Applications

Use of GPU for general computations is a dynamically developing
field with broad applicability

high-performance scientific calculations

computational chemistry
physical simulations
image processing
and others. . .

performance-hungry home and desktop applications

encoding/decoding of multimedia data
game physics
image editing, 3D rendering
etc.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Applications

SW developers are still a sought-for scarce resource. . .

SW developers capable of parallel SW development are extremely
sought-for scarce resource
A lot of existing software is not parallel

it is necessary to make it parallel in order to increase
performance

and somebody has to do it :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Applications

SW developers are still a sought-for scarce resource. . .
SW developers capable of parallel SW development are extremely
sought-for scarce resource

A lot of existing software is not parallel

it is necessary to make it parallel in order to increase
performance

and somebody has to do it :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Motivation – Applications

SW developers are still a sought-for scarce resource. . .
SW developers capable of parallel SW development are extremely
sought-for scarce resource
A lot of existing software is not parallel

it is necessary to make it parallel in order to increase
performance

and somebody has to do it :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Historic Excursion

SIMD model since ’60s
Solomon project by Westinghouse company at the beginning of
’60s
transferred to University of Illinois as ILLIAC IV
separate ALU for each data element – massively parallel
original plan: 256 ALUs, 1 GFLOPS
finished in 1972, 64 ALUs, 100–150 MFLOPS

in ’80s–90s: vector supercomputers, TOP500

in todays CPUs: SSE (x86), ActiVec (PowerPC)

Cg: programming vertex and pixel shaders in graphics grads
(cca 2003)

CUDA: general GPU programming, SIMT model (first
released on 15. February 2007)
future?

OpenCL
higher programming languages, automatic parallelization

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

GPU Architecture

CPU vs. GPU

couple of cores vs. vs. tens of multiprocessors

out of order vs. in order

MIMD, SIMD short vectors vs. SIMT for long vectors

large cache vs. small cache, often read-only

GPU uses more transistors for computating units then for cache
and control =⇒ higher performance, less flexibility

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

GPU Architecture

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

GPU Architecture

Within the system:

co-processor with dedicated memory

asychnornous processing of instructions

attached using PCI-E to the rest of the system

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

G80 Processor

G80

first CUDA processor

16 multiprocessors

each multiprocessor

8 scalar processors
2 units for special functions
up to 768 threads

HW for thread switching and scheduling

threads are grouped into warps by 32

SIMT

native synchronization within the multiprocessor

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

G80 Memory Model

Memory model

8192 registers shared among all threads of a multiprocessor

16 kB of shared memory

local within the multiprocessor
as fast as registry (under certain constraints)

constant memory

cached, read-only

texture memory

cached with 2D locality, read-only

global memory

non cached, read-write

data transfers between global memory and system memory
through PCI-E

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

G80 Processor

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Further Development

Processors based on G80

double-precision calculations

relaxed rules for efficient memory access to global memory

more of on-chip resources (more registers, more threads per
MP)

better sychronization options (atomic operations, warp voting)

Fermi

higher parallelization on multiprocessor level (more cores, two
warp schedulers, higher double-precission performance)

configurable L1 and shared L2 cache

flat address space

better floating point precision

parallel run of kernels

better synchronization tools

other changes stemming from a different architecture

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

CUDA

CUDA (Compute Unified Device Architecture)

architecture for parallel computations developed by Nvidia

provides a new programming model, allows efficient
implementation of general GPU computations

may be used in multiple programming languages

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

C for CUDA

C for CUDA is extension of C for parallel computations

explicit separation of host (CPU) and device (GPU) code

thread hierarchy

memory hierarchy

synchronization mechanisms

API

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Thread Hierarchy

Thread hierarchy

threads are organized into blocks

blocks form a grid

problem is decomposed into sub-problems that can be run
independently in parallel (blocks)

individual sub-problems are divided into small pieces that can
be run cooperatively in parallel (threads)

scales well

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Thread Hierarchy

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Memory Hierarchy

More memory types:

different visibility

different lifetime

different speed and behavior

brings good scalability

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Memory Hierarchy

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We want to sum vectors ~a and ~b and store the result in vector ~c

We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find which thread we are?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We want to sum vectors ~a and ~b and store the result in vector ~c
We need to find parallelism in the problem.

Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find which thread we are?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We want to sum vectors ~a and ~b and store the result in vector ~c
We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find which thread we are?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We want to sum vectors ~a and ~b and store the result in vector ~c
We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.

i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find which thread we are?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We want to sum vectors ~a and ~b and store the result in vector ~c
We need to find parallelism in the problem.
Serial sum of vectors:

for (int i = 0 ; i < N ; i++)
c [i] = a [i] + b [i] ;

Individual iterations are independent – it is possible to parallelize,
scales with the size of the vector.
i-th thread sums i-th component of the vector:

c [i] = a [i] + b [i] ;

How do we find which thread we are?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Thread Hierarchy

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Thread and Block Identification

C for CUDA has built-in variables:

threadIdx.{x, y, z} tells position of a thread in a block

blockDim.{x, y, z} tells size of the block

blockIdx.{x, y, z} tells position of the block in grid (z always
equals 1)

gridDim.{x, y, z} tells grid size (z always equals 1)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

Thus we calculate the position of the thread (grid and block are
one-dimensional):

int i = blockIdx . x∗blockDim . x + threadIdx . x ;

Whole function for parallel summation of vectors:

__global__ void addvec (float ∗a , float ∗b , float ∗c){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
c [i] = a [i] + b [i] ;

}

The function defines so called kernel; we specify how meny threads
and what structure will be run when calling.

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Function Type Quantifiers

C syntax enhanced by quantifiers defining where the code is run
and from where it may be called:

device function is run on device (GPU) only and may be
called from the device code only

global function is run on device (GPU) only and may be
called from the host (CPU) code only

host function is run on host only and may be called from
the host only

host and device may be combined – function is
compiled for both then

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

The following steps are needed for the full computation:

allocate memory for vectors and fill it with data

allocate memory on GPU

copy vectors a a b to GPU

compute the sum on GPU

store the result from GPU into ~c

use the result in ~c :-)

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

CPU code that fills ~a and ~b and computes ~c

#include <s t d i o . h>
#define N 64
int main (){

float a [N] , b [N] , c [N] ;
for (int i = 0 ; i < N ; i++)

a [i] = b [i] = i ;

// GPU code w i l l be he r e

for (int i = 0 ; i < N ; i++)
printf (”%f , ” , c [i]) ;

return 0 ;
}

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

GPU Memory Management

It is necessary to allocate the memory dynamically.

cudaMalloc (void∗∗ devPtr , size_t count) ;

allocates memory of the count size and sets the pointer devPtr to
it.
To release the memory:

cudaFree (void∗ devPtr) ;

To copy the memory:

cudaMemcpy (void∗ dst , const void∗ src , size_t count ,
enum cudaMemcpyKind kind) ;

copies count bytes from src to dst, kind determins copying
direction (e.g., cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost).

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We allocate the memory and transfer the data:

float ∗d_a , ∗d_b , ∗d_c ;
cudaMalloc ((void∗∗)&d_a , N∗sizeof (∗ d_a)) ;
cudaMalloc ((void∗∗)&d_b , N∗sizeof (∗ d_b)) ;
cudaMalloc ((void∗∗)&d_c , N∗sizeof (∗ d_c)) ;

cudaMemcpy (d_a , a , N∗sizeof (∗ d_a) , cudaMemcpyHostToDevice) ;
cudaMemcpy (d_b , b , N∗sizeof (∗ d_b) , cudaMemcpyHostToDevice) ;

// the k e r n e l w i l l be run he r e

cudaMemcpy (c , d_c , N∗sizeof (∗ c) , cudaMemcpyDeviceToHost) ;

cudaFree (d_a) ;
cudaFree (d_b) ;
cudaFree (d_c) ;

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

Running the kernel:

kernel is called as a function; between the name and the
arguments, there are three brackets with specification of grid
and block size

we need to know block size and their count

we will use 1D block and grid with fixed block size

the size of the grid is determined in a way to compute the
whole problem of vector sum

For vector size dividable by 32:

#define BLOCK 32
addvec<<<N/BLOCK , BLOCK>>>(d_a , d_b , d_c) ;

How to solve a general vector size?

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Sum of Vectors

We will modify the kernel source:

__global__ void addvec (float ∗a , float ∗b , float ∗c , int n){
int i = blockIdx . x∗blockDim . x + threadIdx . x ;
if (i < n) c [i] = a [i] + b [i] ;

}

And call the kernel with sufficient number of threads:

addvec<<<N/BLOCK + 1 , BLOCK>>>(d_a , d_b , d_c , N) ;

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

An Example – Running It

Now we just need to compile it :-)

nvcc -I/usr/local/cuda/include -L/usr/local/cuda/lib -lcudart \

-o vecadd vecadd.cu

Where to work with CUDA?

on a remote computer: barracuda.fi.muni.cz,
airacuda.fi.muni.cz, accounts will be made

Windows stations in computer halls (will be specified later)

your own machine: download and install CUDA toolkit and
SDK from developer.nvidia.com

source code used in lectures will be published as a part of
course materials

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Today we have demonstrated

why it is good to know CUDA

differences of GPUs

C for CUDA basics

Next lecture will focus on

more detailed introduction to GPU from hardware perspective

parallelism provided by GPU

memory available to GPU

more complex examples of GPU implementations

An assignment for you:

try to compile your first CUDA program

play with it if you like

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Today we have demonstrated

why it is good to know CUDA

differences of GPUs

C for CUDA basics

Next lecture will focus on

more detailed introduction to GPU from hardware perspective

parallelism provided by GPU

memory available to GPU

more complex examples of GPU implementations

An assignment for you:

try to compile your first CUDA program

play with it if you like

Jǐŕı Filipovič Introduction, CUDA Basics

About The Class Motivation GPU Architecture CUDA Sample Code Conclusions

Today we have demonstrated

why it is good to know CUDA

differences of GPUs

C for CUDA basics

Next lecture will focus on

more detailed introduction to GPU from hardware perspective

parallelism provided by GPU

memory available to GPU

more complex examples of GPU implementations

An assignment for you:

try to compile your first CUDA program

play with it if you like

Jǐŕı Filipovič Introduction, CUDA Basics

	About The Class
	What's offered?
	What is expected from you

	Motivation
	Paradigm Change

	GPU Architecture
	CUDA GPU
	G80

	CUDA
	Architecture

	Sample Code
	Code
	Running It

	Conclusions

