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Alternatives to CUDA

CUDA is (and probably will be) only for nVidia GPU.

OpenCL

a standard for various types of accelerators (independent on
HW vendor and OS)

strongly inspired by CUDA, very easy transition

DirectX compute

Various GPU vendors, one OS

Brook(+)

multi-platform, only for AMD/ATI

only for streams
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Why to learn CUDA?

Why CUDA and not OpenCL?

published results still show higher speed

better stability of the environment

biggest number of applications

biggest number of libraries

biggest number of publications

easier to learn

similarity to OpenCL allows easy transition

PGI x86 CUDA compiler
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Differences among CUDA GPUs

New generations bring higher performance and new computing
capabilities.

compute capability describes richness of GPU instruction set
and amount of resources such as registers, number of
concurrently running threads, etc.

the performance grows with the ability to put more than one
core on a GPU

Cards in on generation also differ in performance substantially

to produce more affordable cards

due to changes introduces later in the manufacturing process

to minimize power consumption of mobile GPUs
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GPUs Available Today

Currently available GPUs

compute capability 1.0 - 2.1

we will learn the differences later

1–30 multiprocessors (19.2 - 1 345.0 GFLOPs)

frequency of 800 MHz–1.836 GHz

width and speed of data bus sběrnice (64–512 bit,
6.4–177 GB/s)

Jǐŕı Filipovič GPU Hardware and Parallelism



GPU hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Available products

GeForce graphics cards

mainstream solution for gaming

cheap, wildely used, broad range of performance

disadvantage – limited memory (up to 1.5 GB on GPU)

Professional Quadro graphics cards

the same as GeForce from CUDA perspective

up to 4 GB of memory on GPU

several times more expensive

Tesla

a solution specially designed for CUDA computing

one GPU per generation (basic variant), always large memory

available as a PCIe card or standalone multi-GPU machines

expensive, interesting for computing centers and personal
supercomputers
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GPU Parallelism

Parallel algorithms need to be designed w.r.t. the parallelism
available in the HW

GPU: array of SIMT multiprocessors working using shared
memory

Decomposition for GPU

coarse-grained decomposition of the problem into the parts
that don’t need intensive communication

fine-grained decomposition similar to vectorization (but SIMT
is more flexible)
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Task Hierarchy
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SIMT

A multiprocessor has one unit executing an instruction

all 8 SPs have to execute the same instruction

new instruction is executed every 4 cycles

32 threads (so called warp) need to execute the same
instruction

How about code branching?

if different parts of a warp perform different instructions, they
are serialized

decreases performance—should be avoided

The multiprocessor is thus MIMD (Multiple-Instruction
Multiple-Thread) from programmer’s perspective and SIMT
(Single-Instruction Multiple-Thread) from performance perspective.
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GPU Architecture
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Thread Properties

GPU threads are very lightweight compared to CPU threads.

their run time can be very shorts (even tens of instructions)

there may be (should be) many of them

they should not use large amount of resources

Threads are aggregated into blocks

blocks are run on individual multiprocessors

having sufficient number of blocks is substantial to achieve
good scalability

Number of threads and thread blocks per multiprocesor is limited.
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Memory Latency Masking

Memory has latency

global memory has high latency (hundreds of cycles)

registers and shared memory have read-after-write latency

Memory latency hiding is different from CPU

no instructions are executed out of order

most memory types have no cache

When a warp waits for data from memory, another warp may be
executed

allows memory latency hiding

requires execution of an order of magnitude more threads
compared to number of GPU cores

thread execution scheduling and switching is implemented
directly in HW without overhead

Works similarly for synchronization.
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Thread-Local Memory

Registers

fastest memory, directly usable in instructions

local variables in a kernel and variables for intermediate results
go automatically into the registers

if there is sufficient number of registers
if the compiler can determine static array indexing

thread (warp) scoped

Local memory

data that doesn’t fit into the registers go into the local
memory

local memory is stored in DRAM =⇒ slow, high latency

thread (warp) scoped

Jǐŕı Filipovič GPU Hardware and Parallelism



GPU hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Thread-Local Memory

Registers

fastest memory, directly usable in instructions

local variables in a kernel and variables for intermediate results
go automatically into the registers

if there is sufficient number of registers
if the compiler can determine static array indexing

thread (warp) scoped

Local memory

data that doesn’t fit into the registers go into the local
memory

local memory is stored in DRAM =⇒ slow, high latency

thread (warp) scoped
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Block-Local Memory

Shared memory

as fast as registers for c. c. 1.x

if memory bank conflicts are avoided
instructions can use only one operand in shared memory
(otherwise explicit load/store is needed)

declared using shared in C for CUDA

a variable in shared memory can have dynamic size
(determined at startup), if declared as extern withou size
specification

block scoped
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Shared Memory

Static shared memory declaration

__shared__ float myArray [ 1 2 8 ] ;

Dynamic allocation

extern __shared__ char myArray [ ] ;
float ∗array1 = ( float ∗) myArray ;
int ∗array2 = ( int∗)&array1 [ 1 2 8 ] ;
short ∗array3 = ( short∗)&array2 [ 2 5 6 ] ;

It creates an array array1 of float type with size 128, array2 of int
type sized 256, and array3 of floating size. Total size has to be
specified at kernel startup.

myKernel<<<grid , block , n>>>();
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GPU Local Memory

Global memory

an order of magnitude lower bandwidth compared to shared
memory

latency in order of hundreds for GPU cycles

addressing needs to be aligned to get optimum performance

application-scoped

L1 cache (128 bytes/row) and L2 cache (32 bytes/row) in
Fermi architecture

May be dynamically allocated using cudaMalloc or statically
allocated using device declaration.
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GPU Local Memory

Constant memory

read-only

cached

cache hit is as fast as registry (under certain constraints),
cache miss is as fast as global memory

limited size (64 kB for currently available GPUs)

application-scoped
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Constant Memory

Declared using constant keyword; the following function is used
for copying data to constant memory:

cudaError_t cudaMemcpyToSymbol ( const char ∗symbol ,
const void ∗src , size_t count , size_t offset ,
enum cudaMemcpyKind kind )

Data is copied from system memory (cudaMemcpyHostToDevice)
or global memory (cudaMemcpyDeviceToDevice) from src into
symbol. The copied block has count bytes. Copied with offset into
the symbol memory.
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GPU Local Memory

Texture memory

cached, 2D locality

read-only for cache coherency reasons

high latency

several addressing modes

normalization into [0, 1] range
truncation or overflowing of coordinates

possible data filtering

linear interpolation or nearest value

this functionality is “for free” (implemented in HW)

More details are available in CUDA Programming Guide.
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System-Local Memory

System RAM

connected to GPU using PCIe

CPU (host) and GPU (device) memory transfers are
complicated by virtual addressing

it is possible to allocate so called page-locked memory areas

overall system performance may be reduced
limited size
data is transferred faster over PCIe
allows for parallel kernel run and data copying
allows for mapping of host address space onto the device
allows for write-combining access (data is not cached by CPU)
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Page Locked Memory

cudaMallocHost() is used instead of malloc() to allocate the
memory; the memory is freed using cudaFreeHost()

cudaHostAllocPortable flag ensures page-locked memory for
all CPU threads

cudaHostAllocWriteCombined flag turns off caching for CPU
allocated memory

cudaHostAllocMapped flag sets host memory mapping in the
device address space
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Page-Locked Memory

Mapped memory

the same position has a different address for device and host
code
device address may be obtained using
cudaHostGetDevicePointer()
before calling any other CUDA API functions, it is necessary
to call cudaSetDeviceFlags() with cudaDeviceMapHost flag

Asynchronous transfers

API funkce Async suffix
both data transfers – CPU computation and data transfer –
GPU computation may be overlapping (more detailed
explanation will come with streams)

Non-cached memory

slow access from host code
faster access from device memory
CPU cache doesn’t get flushed
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Synchronization within the Block

native barrier synchronization

all threads have to enter it (beware of conditions!)
one instruction only, very fast if it doesn’t degrade parallelism
C for CUDA call syncthreads()
Fermi extensions: count, and, or

shared memory communication

threads can exchange data
synchronization using atomic variables or a barrier
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Atomic operations

performs read-modify-write operations on shared or global
memory

no interference with other threads

for 32-bit and 64-bit integers (c. c. ≥ 1.2) and float (u c. c.
≥ 2.0)

using global memory for c. c. ≥ 1.1 and shared memory for
c. c. ≥ 1.2

arithmetic (Add, Sub, Exch, Min, Max, Inc, Dec, CAS) a
bitwise (And, Or, Xor) operations
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Warp Voting

All threads in one warp evaluate the same condition and perform
its comparison. Available in c. c. ≥ 1.2.

int __all ( int predicate ) ;

Result is non-zero iff the predicate is non-zero for all the threads in
the warp.

int __any ( int predicate ) ;

Result is non-zero iff the predicate is non-zero for at least one
thread in the warp.

unsigned int __ballot ( int predicate ) ;

Contains voting bit mask of individual threads.
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Synchronization of Memory Operations

Shared memory is usually used for communication among threads
or as a cache for data used by threads.

threads use data stored by other threads

it is necessary to ensure that we do not read data that is not
available yet

should we wait, we can use syncthreads()
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Synchronization of Memory Operations

Compiler can optimize operations on shared/global memory
(intermediate results may be kept in registers) and can reorder
them

if we need to ensure that the data is visible for others, we use
threadfence() or threadfence block()

if a variable is declared as volatile, all load/store operations
are implemented in shared/global memory

very important if we assume implicit warp synchronization
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Block Synchronization

Among blocks

global memory is visible for all blocks

poor native support for synchronization

no global barrier
atomic operations on global memory for newer GPUs
global barrier can be implemented using kernel calls (another
solution is quite tricky)
poor options for global synchronization make programming
hard but allow for very good scalability
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Global Synchronization using Atomic Operations

Problem of sum of elements in a vector

each block sums elements in its part of a vector

global barrier

one block sums results of all the blocks
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__device__ unsigned int count = 0 ;
__shared__ bool isLastBlockDone ;
__global__ void sum ( const float∗ array , unsigned int N ,

float∗ result ) {
float partialSum = calculatePartialSum ( array , N ) ;
if ( threadIdx . x == 0) {

result [ blockIdx . x ] = partialSum ;
__threadfence ( ) ;
unsigned int value = atomicInc(&count , gridDim . x ) ;
isLastBlockDone = ( value == ( gridDim . x − 1 ) ) ;

}
__syncthreads ( ) ;
if ( isLastBlockDone ) {

float totalSum = calculateTotalSum ( result ) ;
if ( threadIdx . x == 0) {

result [ 0 ] = totalSum ;
count = 0 ;

}
}

}
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Matrix Multiplication

We want to multiply matrices A a B and store the result into C .
For sake of simplicity, we only assume matrices sized n × n.

Ci ,j =
∑n

k=1 Ai ,k · Bk,j

C language:

for ( int i = 0 ; i < n ; i++)
for ( int j = 0 ; j < n ; j++){

C [ i∗n + j ] = 0 . 0 ;
for ( int k = 0 ; k < n ; k++)

C [ i∗n + j ] += A [ i∗n + k ] ∗ B [ k∗n + j ] ;
}
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Parallelization

for ( int i = 0 ; i < n ; i++)
for ( int j = 0 ; j < n ; j++){

C [ i∗n + j ] = 0 . 0 ;
for ( int k = 0 ; k < n ; k++)

C [ i∗n + j ] += A [ i∗n + k ] ∗ B [ k∗n + j ] ;
}

Multiple ways of parallelization

choose one loop

choose two loops

parallelize all the loops
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Parallelization

Parallelization of one loop

doesn’t scale well, it is necessary to use big matrices (we need
thousands of threads for good GPU utilization)

Parallelization of two loops

scales well, number of threads grows quadratically w.r.t. n

Parallelization using inner loop

bad, synchronization needed when writing into C !

Best way is thus to parallelize loops over i and j .

Jǐŕı Filipovič GPU Hardware and Parallelism



GPU hardware Parallelism Memory Hierarchy Synchronization Matrix Multiplication

Parallelization

Parallelization of one loop

doesn’t scale well, it is necessary to use big matrices (we need
thousands of threads for good GPU utilization)

Parallelization of two loops

scales well, number of threads grows quadratically w.r.t. n

Parallelization using inner loop

bad, synchronization needed when writing into C !

Best way is thus to parallelize loops over i and j .
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First Kernel

We can form the block and grid as 2D array.

__global__ void mmul ( float ∗A , float ∗B , float ∗C , int n ){
int x = blockIdx . x∗blockDim . x + threadIdx . x ;
int y = blockIdx . y∗blockDim . y + threadIdx . y ;

float tmp = 0 ;
for ( int k = 0 ; k < n ; k++)

tmp += A [ y∗n+k ] ∗ B [ k∗n+x ] ;

C [ y∗n + x ] = tmp ;
}

Note similarity to math description – parallel version is more
intuitive than the serial one!
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Performance

What will be the performance of our implementation?

Let’s look at GeForce GTX 280

available 622 GFLOPS for matrix multiplication

memory bandwidth is 142 GB/s

Flop-to-word ratio of our implementation

in one step over k, we read 2 floats (one number from A and
B) and perform two arithmetic operations

one arithmetic operation corresponds to transfer of one float

global memory offers throughput of 35.5 billion floats per
second if one warp transfers one float from one matrix and 16
floats from the other matrix, we can achieve 66.8 GFLOPS

66.8 GFLOPS is very far from 622 GFLOPS
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How to Improve It?

We hit the limit of global memory. GPUs have faster types of
memory, can we use them?

For computation of one C element, we have to read one row from
A and one column from B, that are in the global memory.
Is it really necessary to do that separately for each element of C ?

we read the same A row for all the elements in the same row
of C

we read the same B column for all the elements in the same
column of C

we can read some data only once from the global memory into
the shared memory and then read them repeatedly from the
shared memory
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Blockwise Approach

If we access the matrix in blocks, we can amortize transfers from
the global memory:

we will compute a× a block of C matrix

we read blocks of the same size of matrices A and B into the
shared memory iteratively

the blocks will be multiplied and added to C

arithmetic operations to data transfers is a times better

Natural mapping on GPU parallelism

individual thread blocks will only compute blocks of C matrix

they have shared memory

they get synchronized fast

no inter-block synchronization needed
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Blockwise Access

How big blocks?

limited by the size of shared memory

limited by the number of threads that can run on GPU

if one thread is to compute one element of C , a reasonable
block size is 16× 16

multiple of warp size
one block will have reasonable 256 threads
one block needs 2 KB of shared memory
the memory will not limit the performance
(16 · 25.5 = 568 GFLOPS, which is quite close to 622 GFLOPS)
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Algorithm

Algorithm schema

each thread block will have As and Bs in the shared memory

blocks of A and B matrices will be multiplied iteratively, the
results will get accumulated in Csub variable

threads in a block read blocks into As and Bs simultaneously
each thread mutliplies blocks in As and Bs for its element of
Csub matrix

each thread stores one element of the matrix into the C in
global memory

Beware of synchronization

the blocks need to be read completely before the
multiplication starts

before we read new blocks, operation on previous data needs
to be completed
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Second Kernel

__global__ void mmul ( float ∗A , float ∗B , float ∗C , int n ){
int bx = blockIdx . x ;
int by = blockIdx . y ;
int tx = threadIdx . x ;
int ty = threadIdx . y ;
__shared__ float As [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;
__shared__ float Bs [ BLOCK_SIZE ] [ BLOCK_SIZE ] ;

float Csub = 0.0 f ;
for ( int b = 0 ; b < n/BLOCK_SIZE ; b++){

As [ ty ] [ tx ] = A [ ( ty + by∗BLOCK_SIZE )∗ n + b∗BLOCK_SIZE+tx ] ;
Bs [ ty ] [ tx ] = B [ ( ty + b∗BLOCK_SIZE )∗ n + bx∗BLOCK_SIZE+tx ] ;
__syncthreads ( ) ;

for ( int k = 0 ; k < BLOCK_SIZE ; k++)
Csub += As [ ty ] [ k ]∗ Bs [ k ] [ tx ] ;

__syncthreads ( ) ;
}

C [ ( ty + by∗BLOCK )∗ n + bx∗BLOCK_SIZE+tx ] = Csub ;
}
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Performance

theoretical limitation of first kernel is 66.8 GFLOPS, measured
performance is 36.6 GFLOPS

theoretical limitation of first kernel is 568 GFLOPS, measured
performance is 198 GFLOPS

how to get closer to the maximum performance of the card?

we need to understand HW and its limitation better and
optimize the algorithms accordingly

topics for the next lecture
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