
DISTRIBUTED EVENT-DRIVEN MONITORING

INTRO

Daniel Tovarňák

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY

Monitoring (of distributed infrastructure)

• Continuous and systematic collection, analysis, and
evaluation of data related to the state and behavior of
respective constituents of said infrastructure.

• Enterprise networks

• Internet of Things

• Smart Grid (energy grid)

• Cloud infrastructure

P

P
P

P
P

P

P

P
P

P

P
P

P
P

P
P

P
P

C
P

P

P

P
P

P

P P

?

Monitoring in General

Goal – intelligent behavior monitoring

• Detection of (known) behavior patterns in the
produced monitoring data in real-time

• Dictionary attack, DDoS detection, Job state

• Monitoring information: User Bob has logged in

• Pattern: User X failed to log in 1000 times within 1 minute

• Low overhead imposed on monitored machines and
network

• Several problems hinder achievement of such a goal

Monitoring of Cloud infrastructure

• Huge volumes of data produced by many distributed
producers (virtual machines)

• High variability of monitoring data
• Hardware, OS, Middle-ware, Web server, Application-level

• The entity of interest is usually spread across many
computing nodes
• Hadoop job, Custom distributed algorithm, Replicated DB

• Specific trust model

Problems

• Technical
• mainly with respect to the monitoring data production

• e.g. logging in natural language

• Conceptual
• related to 3V of Big Data

• e.g. scalability, and query expressiveness/complexity

Monitoring data collection

• Huge volumes of data (up to 1MB/s per VM)
• typically 100-1000 producers

• Centralized
• Limited scalability

• Selective (eg. Publish-subscribe)
• Still centralized (data-wise)

• Distributed (eg. Hadoop Distributed File System)
• Possible solution, in combination with pub-sub

Distributed processing

• Traditional DBMSs (distributed or not) are not very
suitable for continuous queries (from the
performance perspective)

• Solutions based on distributed collection and batch
processing (MapReduce) have high latency (~mins)

• Off-line vs. On-line algorithms

Distributed Event-driven Monitoring Model

• Stream (online) processing of monitoring data in the
form of events – everything is an event

• Techniques and algorithms for complex event
processing

• Fully distributed processing using special variant of
publish-subscribe (pattern-based)

Event-driven

• We consider everything to be an event
• Measurement/metric (it is a predefined change)

• State (its change)

• Event (duh…)

• Complex Event Processing

• simple events are composed into more complex ones

• final complex event = detected pattern

Distributed Event-driven Monitoring Model

PA

PA

PA PA

C

C

C

C

P

1

3

P

2

2

P

1

2

PA

SUBSCRIBEPUBLISH

P

3

2

behavior & state
events

complex
events

complex
queries

sub-queries

1

1

2

3

1|2|3 – access control

pub

sub

Distributed Event-driven Monitoring Model

PA

PA

PA PA

C

C

C

C

P

1

3

P

2

2

P

1

2

PA

SUBSCRIBEPUBLISH

P

3

2

behavior & state
events

complex
events

complex
queries

sub-queries

1

1

2

3

1|2|3 – access control

pub

sub

{'SimpleEvent':{
 'occurrenceTime':'2012-04-11T08:25:13',
 'hostname':'lykomedes.fi.muni.cz',
 'entity':'org.openssh.sshd.SERVER',
 'type':'org.openssh.LOGIN',
 'http://openssh.com/v6.1/events.jsch':{
 'user':'bob',
 'success':'false',
 'sourceIP': 147.165.0.86,
 'port':22
 }
}}

Distributed Event-driven Monitoring Model

PA

PA

PA PA

C

C

C

C

P

1

3

P

2

2

P

1

2

PA

SUBSCRIBEPUBLISH

P

3

2

behavior & state
events

complex
events

complex
queries

sub-queries

1

1

2

3

1|2|3 – access control

pub

sub

Subscribe for DISTR_DICT_ATTACK=

select count(*) as hostsNumber
from RepeatedLoginEvent.win:time(2 min)
where hostsNumber > 10
group by hostname

AND REPEATED_LOGIN=

select hostname, username,
 success, count(*) as attempts
from LoginEvent.win:time(60 sec)
where attempts > 1000, success=false
group by hostname, username

Distributed Event-driven Monitoring Model

PA

PA

PA PA

C

C

C

C

P

1

3

P

2

2

P

1

2

PA

SUBSCRIBEPUBLISH

P

3

2

behavior & state
events

complex
events

complex
queries

sub-queries

1

1

2

3

1|2|3 – access control

pub

sub

REPEATED_LOGIN

DISTR_DICT_ATTACK

LOGIN

LOGIN
3

Distributed Event-driven Monitoring Model

PA

PA

PA PA

C

C

C

C

P

1

3

P

2

2

P

1

2

PA

SUBSCRIBEPUBLISH

P

3

2

behavior & state
events

complex
events

complex
queries

sub-queries

1

1

2

3

1|2|3 – access control

pub

sub

REPEATED_LOGIN

DISTR_DICT_ATTACK

LOGIN

LOGIN

Distributed Event-driven Monitoring Model

PA

PA

PA PA

C

C

C

C

P

1

3

P

2

2

P

1

2

PA

SUBSCRIBEPUBLISH

P

3

2

behavior & state
events

complex
events

complex
queries

sub-queries

1

1

2

3

1|2|3 – access control

pub

sub

REPEATED_LOGIN

DISTR_DICT_ATTACK

{'ComplexEvent':{
 'id':19058906,
 'occurrenceTime':'2012-04-11T08:25:13.129Z',
 'hostname':'processing-agent-14.fi.muni.cz',
 'entity':‘cloud1-group',
 'type':'cz.muni.fi.ngmon.DISTR_DICT_ATTACK',
 'http://ngmon.fi.muni.cz/v1.0/cplxevents.jsch':{
 'hostnames':[aisa.fi, ... , lykomedes.fi],
 'hostsNumber': 19,
 'users':[xtovarn, tomp]
 }
}}

C

Different representation of the model

Event Processing Agents

• Processing agent performs one or more processing
functions -- operators

• Filter

• Time window
• sliding-tuple, sliding, tumble

• Aggregation (+ group by)
• sum, count, stdev, min, max

• Sequence detection

• Multi-way JOIN

Box-And-Arrows Queries

P

P

P

WIN
60 secs

AGG
count

FILTER
c > 1000

WIN
2 mins

FILTER
succ = false

AGG
count

FILTER
c > 10 C

GB
user, hostname

GB
hostname

Box-And-Arrows Queries

P

P

P

WIN
60 secs

AGG
count

FILTER
c > 1000

WIN
2 mins

FILTER
succ = false

AGG
count

FILTER
c > 10 C

GB
user, hostname

GB
hostname

Processing Agent 1

Processing Agent 2

Box-And-Arrows Queries

P

P

P

WIN
60 secs

AGG
count

FILTER
c > 1000

WIN
2 mins

FILTER
succ = false

AGG
count

FILTER
c > 10 C

GB
user, hostname

GB
hostname

Processing Agents 1..N

Processing Agents N+1, N+2

Models

• Event Processing Algebra
• simple EP operator algebra
• time and space complexity of each operator

• Distributed monitoring (meta?)model (static, dyn.)
• best operators distribution

• (w.r.t. available nodes, bandwidth, ever)

• latency (minimize)
• throughput (maximize)

• What data (from where) are needed to detect the
pattern?
• which producers, what events?

Prototype Implementation – Current state

• Prototype of distributed variant (simple static
deployment with known patterns)
• as the number of monitored nodes grows, new monitoring

nodes can be added – almost linear scalability

• Typical CEP engine is able to process 50k-100k events
per second

• Distributed engine/algorithm under development
• Lightweigth engine (limited set of operators for monitoring)

• Erlang is used – scalability, reliability, robustness

Summary - DEDMM

• Our goal is behavior monitoring of many distributed
producers in real-time

• The model introduces paradigm shift towards online
data processing utilizing complex event processing
and detection

• We aim at fully-distributed event processing

Extension to Smart Grid

• Considerable volumes of data produced by relatively
static set of producers

• Moderate variability of monitoring data
• primarily measurements

• Unreliable and slow communication channels

• GPRS (EDGE)

Simulation environment for Smart Grid

• Joint collaboration of Mycroft Mind,
CERIT-SC MU, ČEZ, and Lasaris FI MU

• 3,500,000 smart meters simulated in
CERIT Cloud (unique project in Europe)

• Several concepts presented today were
used for the simulation environment
monitoring

