
PV227 GPU programming

Marek Vinkler

Department of Computer Graphics and Design

PV227 GPU programming 1 / 56

Motivation

Figure: Taken from shoraspot.com
Figure: Taken from cgsociety.org

PV227 GPU programming 2 / 56

http://www.shoraspot.com/resources/bobby+-natural+shader+pure+body+\protect \T1\textdollar 26+hair.jpg
http://www.cgsociety.org/stories/2009_02/mental/F4_BlueC_armor_cgfx%20shader_maya2.jpg

Course

no more than 2 absences,
final test (on the spot programming),
first lectures more theoretical, then mostly practical.

PV227 GPU programming 3 / 56

Course

new course→ active participation,
only major language features are introduced,
graphics change fast→ help me ;-)

PV227 GPU programming 4 / 56

Contact

Office C420
xvinkl@fi.muni.cz

PV227 GPU programming 5 / 56

Why GPU?

graphics computations are costly,
graphics are “embarrassingly parallel”,
increasing model complexity, screen resolution, . . .
GPU is parallel co-processor.

PV227 GPU programming 6 / 56

Why GPU?

Figure: Taken from
docs.nvidia.com

Figure: Taken from
docs.nvidia.com

PV227 GPU programming 7 / 56

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Shaders

Shaders are small programmes, that can alter the processing of
the input data. The hardware units they target are called
processors. They come in various flavours:

vertex shader: modifies individual vertices,
geometry shader: operates on whole primitives, can create
new primitives,
tessellation shader: similar to geometry shader, specific for
tesselation,
fragment shader: modifies individual pixel fragments,
compute shader: arbitrary parallel computations.

PV227 GPU programming 8 / 56

Fragment vs. Pixel

A pixel represents the contents of the frame buffer at a
specific location.
A fragment is the state required to potentially update a
particular pixel.
A fragment has an associated pixel location, a depth value,
and a set of interpolated parameters.

PV227 GPU programming 9 / 56

Brief history: 1980’s

integrated framebuffer,
draw to display,
tightly CPU controlled,
addition of shaded solids, vertex lighting, rasterization of
filled polygons, depth buffer,
OpenGL in 1989, beginning of graphics pipeline.

PV227 GPU programming 10 / 56

Brief history: 1990’s

Generation 0
fixed graphics pipeline,
half the pipeline on CPU, half on GPU,
1 pixel per cycle, easy to overload→ multiple pipelines,
dawn of “cheap” game hardware: 3DFX (Voodoo), NVIDIA
(TNT), ATI (Rage),
developement driven by games: Quake, Doom, . . .

PV227 GPU programming 11 / 56

Brief history: 1990’s

Generation I
no 2D graphics acceleration; only 3D,
transform part of the pipeline on CPU,
rendering part on GPU (texture mapping, z-buffering,
rasterization),
3DFX Voodoo.

PV227 GPU programming 12 / 56

Brief history: 1990’s

Generation II
entire pipeline on GPU,
term “GPU” introduced for GeForce 256,
AGP instead of PCI bus,
new features: multi-texturing, bump mapping, hardware
T&L,
fixed function pipeline.

PV227 GPU programming 13 / 56

Brief history: 2000–2002

Generation III
programmable pipeline (NVIDIA GeForce 3, ATI Radeon
8500),
parts of the pipeline can be change with custom
programme,
only vertex shaders,
small assembly language “kernels”.

PV227 GPU programming 14 / 56

Brief history: 2002–2004

Generation IV
“fully” programmable pipeline (NVIDIA GeForce FX, ATI
Radeon 9700),
vertex and fragment (pixel) shaders,
dedicated vertex and fragment processors,
floating point support, advanced texture processing→
GPGPU.

PV227 GPU programming 15 / 56

Brief history: 2004–2006

Generation V
faster than Moore’s law growth,
PCI-express bus (NVIDIA GeForce 6, ATI Radeon X800),
multiple rendering targets, increased GPU memory,
high level GPU languages with dynamic flow control
(Brook, Sh).

PV227 GPU programming 16 / 56

Brief history: 2006–2009

Generation VI
massively parallel processors,
unified shaders (NVIDIA GeForce 8),
streaming multiprocessor (SM),
addition of geometry shaders,
new general purpose languages: CUDA, OpenCL.

PV227 GPU programming 17 / 56

Unified shaders

before – different instruction set, capabilities,
now they can do the same (almost – differences of pipeline
position),
gradient merging of instruction sets,
HLSL perspective (http://en.wikipedia.org/wiki/
High-level_shader_language),
currently Shader model 5.0 (compute).

PV227 GPU programming 18 / 56

http://en.wikipedia.org/wiki/High-level_shader_language
http://en.wikipedia.org/wiki/High-level_shader_language

Brief history: 2009–?

Generation VII
even more programmability,
cache hierarchy, ECC, unified memory address space,
focus on general computations,
debuggers and profilers.

PV227 GPU programming 19 / 56

Brief future :D

Generation Vxx
slower rate of performance growth,
more CPU like,
emphasis on better programming languages and tools,
merge of graphics and general purpose APIs.

PV227 GPU programming 20 / 56

Graphics pipeline

Figure: Taken from goanna.cs.rmit.edu.au

PV227 GPU programming 21 / 56

http://goanna.cs.rmit.edu.au/~gl/teaching/rtr&3dgp/notes/pipeline.html

Graphics pipeline

Figure: Taken from
lighthouse3d.com

The graphics pipeline is a
sequence of stages
operating in parallel and in
a fixed order.
Each stage receives its
input from the prior stage
and sends its output to the
subsequent stage.

PV227 GPU programming 22 / 56

http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/pipeline33/

Why programmable pipeline?

Fixed pipeline is limited to algorithms hard-coded into the
graphics chips→ narrow class of effects.
Programmability gives the developer almost limitless
possibilities.
We cannot combine fixed and programmable pipeline.
Once shader is active it is responsible for the entire stage.

PV227 GPU programming 23 / 56

Shaders continued

Typical tasks done in shaders:
vertex shader: animation, deformation, lighting,
geometry shader: mesh processing,
tessellation shader: tessellation,
fragment shader: shading ;-),
compute shader: almost anything.

PV227 GPU programming 24 / 56

Shader languages

Cg (C for Graphics), NVIDIA,
HLSL (High Level Shading Language), Microsoft,
GLSL (OpenGL Shading Language), Khronos Group.

PV227 GPU programming 25 / 56

Shader languages comparison

almost the same capabilities,
conversion tools between them,
Cg and HLSL very similar (different setup),
HLSL DirectX only, GLSL OpenGL only, Cg for both→
different platforms supported.

PV227 GPU programming 26 / 56

Shader languages comparison

HLSL needs DirectX, Cg needs Cg toolkit [DirectX], GLSL
comes with driver,
HLSL & Cg: toolkit compiler→ “same” binary code for all
vendors→ translation to machine code,
GLSL: vendor compiler→ “faster” machine code,
inconsistencies, harder to deal with varying hardware,
Cg may have compiler issues on ATI cards.

PV227 GPU programming 27 / 56

Shader languages comparison

We will use GLSL:
open standard (same as OpenGL),
no install needed,
all platforms, all vendors.

Will will use GLSL 3.30 for OpenGL 3.3 (NVIDIA 9600 GT is a
OpenGL 2.1/3.3 card). Newer features will be mentioned but
not demonstrated.

PV227 GPU programming 28 / 56

OpenGL evolution

Figure: Taken from news.cnet.com

PV227 GPU programming 29 / 56

http://news.cnet.com/8301-30685_3-20000277-264.html

Hands-on shading

http://pixelshaders.com/
http://glsl.heroku.com/
http://www.kickjs.org/example/shader_editor/
shader_editor.html
http://www.iquilezles.org/default.html
http://www.iquilezles.org/live/index.htm

PV227 GPU programming 30 / 56

http://pixelshaders.com/
http://glsl.heroku.com/
http://www.kickjs.org/example/shader_editor/shader_editor.html
http://www.kickjs.org/example/shader_editor/shader_editor.html
http://www.iquilezles.org/default.html
http://www.iquilezles.org/live/index.htm

Coordinate spaces and transforms

the pipeline transforms 3D objects into 2D image,
divided into several coordinate spaces beneficial for
different tasks,
transformation starts with polygon representation of the
model,
represented in object space (local space),
origin and units chosen according to the model.

PV227 GPU programming 31 / 56

Coordinate spaces and transforms

Figure: Taken from
yaldex.com

objects are composed in a single scene
(share a single world),
represented in world space (model
space),
origin and units chosen according to the
scene,
objects are transformed into this space
by modeling transformation as
defined by model matrix,
spatial relations of objects are known
afterwards.

PV227 GPU programming 32 / 56

http://www.yaldex.com/open-gl/ch01lev1sec9.html

Coordinate spaces and transforms

Figure: Taken from
yaldex.com

the scene is viewed by a camera,
the view is represented in eye space
(camera space),
origin at the eye position, looking down
the the negative Z axis,
objects are transformed into this space
by viewing transformation as defined
by view matrix,
spatial relations of objects are
unchanged,
model and view matrix are
combined into modelview matrix
modelview = view ×model .

PV227 GPU programming 33 / 56

http://www.yaldex.com/open-gl/ch01lev1sec9.html

Coordinate spaces and transforms

Figure: Taken from
yaldex.com

the camera defines a viewing volume,
space visible in the final image,
the view is represented as a
axis-aligned cube in clip space,
−w ≤ x ≤ w ,−w ≤ y ≤ w ,w ≤ z ≤ w ,
objects are transformed into this space
by projection transformation as
defined by projection matrix,
beneficial for frustum clipping
polygons outside the axis-aligned
cube.

PV227 GPU programming 34 / 56

http://www.yaldex.com/open-gl/ch01lev1sec9.html

Coordinate spaces and transforms

Figure: Taken from
yaldex.com

the clip space is compressed into [-1,1]
range with the perspective divide,
achieved by dividing with w → only 3
coordinates left,
the resulting space is called
normalized device coordinate space,
beneficial for mapping visible primitives
to arbitrarly sized viewports.

PV227 GPU programming 35 / 56

http://www.yaldex.com/open-gl/ch01lev1sec9.html

Coordinate spaces and transforms

Figure: Taken from
yaldex.com

pixels coordinates are of form 0 –
(width-1) and 0 – (height-1), i.e.
window coordinate system (screen
space),
viewport transformation transforms
the [-1,1] range into this system,
primitives are rasterized in this system.

PV227 GPU programming 36 / 56

http://www.yaldex.com/open-gl/ch01lev1sec9.html

Coordinate spaces and transforms

during computations the variables must be in the same
space,
e.g. vertices, normals and light positions in eye space,
vertex shader must output the clip coordinates.

PV227 GPU programming 37 / 56

GLSL shader setup
1 # inc lude <GL/ glew . h>
2 # inc lude <GL/ g l u t . h>
3

4 vo id main (i n t argc , char ∗∗argv)
5 {
6 g l u t I n i t (& argc , argv) ;
7 . . .
8 g l e w I n i t () ;
9

10 i f (g lewIsSupported ("GL_VERSION_3_3"))
11 {
12 p r i n t f (" Ready f o r OpenGL 3 . 3 \ n ") ;
13 }
14 else
15 {
16 p r i n t f ("OpenGL 3.3 not supported \ n ") ;
17 e x i t (1) ;
18 }
19 setShaders () ;
20 i n i t G L () ;
21

22 glutMainLoop () ;
23 }

PV227 GPU programming 38 / 56

GLSL shader setup

Figure: Taken from lighthouse3d.com

PV227 GPU programming 39 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/opengl-setup-for-glsl/

Creating shader

Figure: Taken from
lighthouse3d.com

GLuint glCreateShader(GLenum shaderType);

shaderType − GL_{VERTEX|FRAGMENT|

GEOMETRY|TESS_CONTROL|TESS_EVALUATION|

COMPUTE}_SHADER.

Creates shader object of a specified
type that acts as a container.
Returns the handle for that container.

PV227 GPU programming 40 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-shader/

Creating shader

Figure: Taken from
lighthouse3d.com

void glShaderSource(GLuint shader, GLsizei count, const

GLchar ∗∗string, const GLint ∗length);

shader − the handler to the shader.

count − the number of strings in the arrays.

string − the array of strings .

length − an array with the length of each string;

NULL, meaning that the strings are NULL terminated.

Replaces a source code for the shader.
Single string can be used instead of an
array.
Multiple strings can define common
pieces of code, third-party library
functions,

PV227 GPU programming 41 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-shader/

Creating shader

Figure: Taken from
lighthouse3d.com

void glCompileShader(GLuint shader);

shader − the handler to the shader.

Compiles the shader.
Checks its validity.

PV227 GPU programming 42 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-shader/

Creating program

Figure: Taken from
lighthouse3d.com

GLuint glCreateProgram(void);

Creates program object that acts as a
container.
Returns the handle for that container.
Any number of programs can be
created and used in a single frame.
Programes can be switched at runtime.
No program used→ fixed pipeline.

PV227 GPU programming 43 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-program/

Creating program

Figure: Taken from
lighthouse3d.com

void glAttachShader(GLuint program, GLuint shader);

program − the handler to the program.

shader − the handler to the shader you want to

attach.

Attaches a shader into the program.
The shaders need neither be compiled
nor have source code.
Any number of shaders can be
attached, but only one main for each
shader type.
Single shader can be attached to
many programes.

PV227 GPU programming 44 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-program/

Creating program

Figure: Taken from
lighthouse3d.com

void glLinkProgram(GLuint program);

program − the handler to the program.

Links the program, resolves
cross-shader references.
Shaders must be compiled at this point.
Afterwards the shaders can be modified
& recompiled.
Uniform variables are assigned
locations and set to 0.

PV227 GPU programming 45 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-program/

Creating program

Figure: Taken from
lighthouse3d.com

void glUseProgram(GLuint prog);

program − the handler to the program; zero to use

fixed functionality .

Sets the program for use in rendering.
Relinking a used program also sets it
for use.

PV227 GPU programming 46 / 56

http://www.lighthouse3d.com/tutorials/glsl-tutorial/creating-a-program/

Cleanup

void glDetachShader(GLuint program, GLuint shader);

program − the program to detach from.

shader − the shader to detach.

Detaches shader from a program.

void glDeleteShader(GLuint id);

void glDeleteProgram(GLuint id);

id − the handler of the shader / program to erase.

When attached shader/program is deleted, it is only
“marked for deletion” and is fully deleted when no longer
used.
Shaders may be deleted as soon as they are attached,
everything will be cleaned up when program is deleted.

PV227 GPU programming 47 / 56

GLSL setup example
1 vo id setShaders ()
2 {
3 char ∗vs , ∗ f s ;
4

5 / / Setup
6 v = glCreateShader (GL_VERTEX_SHADER) ;
7 f = glCreateShader (GL_FRAGMENT_SHADER) ;
8

9 vs = tex tF i leRead (" s imple . v e r t ") ;
10 f s = tex tF i leRead (" s imple . f r ag ") ;
11

12 const char ∗ vv = vs ;
13 const char ∗ f f = f s ;
14

15 glShaderSource (v , 1 , &vv , NULL) ;
16 glShaderSource (f , 1 , & f f , NULL) ;
17

18 f r ee (vs) ;
19 f r ee (f s) ;
20

21 glCompileShader (v) ;
22 glCompileShader (f) ;

PV227 GPU programming 48 / 56

GLSL setup example (cont.)
23

24 p = glCreateProgram () ;
25

26 glAt tachShader (p , v) ;
27 glAt tachShader (p , f) ;
28

29 glLinkProgram (p) ;
30 glUseProgram (p) ;
31

32 . . .
33

34 / / Clean up
35 glDetachShader (p , v) ;
36 glDetachShader (p , f) ;
37

38 glDeleteShader (v) ;
39 glDeleteShader (f) ;
40

41 glUseProgram (0) ;
42 glDeleteProgram (p) ;
43 }

PV227 GPU programming 49 / 56

State query

void glGetShaderiv(GLuint shader, GLenum pname, GLint ∗params);

shader − the shader to query.

pname − parameter to query.

params − queried state.

pname:
GL_SHADER_TYPE – type of the shader,
GL_DELETE_STATUS – marked for deletion?,
GL_COMPILE_STATUS – last compile successful?,
GL_INFO_LOG_LENGTH – length of the information log,
GL_SHADER_SOURCE_LENGTH – length of the
concatenated shader.

PV227 GPU programming 50 / 56

State query

void glGetProgramiv(GLuint program, GLenum pname, GLint ∗params);

program − the shader to query.

pname − parameter to query.

params − queried state.

pname (not all shown):
GL_LINK_STATUS – last link successful?,
GL_DELETE_STATUS – marked for deletion?,
GL_VALIDATE_STATUS – last validation successful?,
GL_INFO_LOG_LENGTH – length of the information log,
information on number of shaders attached, number of
attribute values and uniform variables.

PV227 GPU programming 51 / 56

State query

void glGetShaderInfoLog(GLuint shader, GLsizei maxLength, GLsizei ∗length, GLchar

∗infoLog);

shader − the shader to query.

maxLength − maximal length of output buffer.

length − actual length of the log.

infoLog − the shader log.

updated during shader compile,
may contain diagnostic messages, errors, warnings etc.
(implementation specific).

PV227 GPU programming 52 / 56

State query

void glGetProgramInfoLog(GLuint program, GLsizei maxLength, GLsizei ∗length,

GLchar ∗infoLog);

program − the program to query.

maxLength − maximal length of output buffer.

length − actual length of the log.

infoLog − the shader log.

updated during program validation or link,
may contain diagnostic messages, errors, warnings etc.
(implementation specific).

PV227 GPU programming 53 / 56

State query

void glValidateProgram(GLuint program);

program − the program to validate.

checks whether program can execute given current OpenGL
state,
updates the program log,
only for developement (slow).

PV227 GPU programming 54 / 56

GLSL query example

1 vo id pr in tShader In foLog (GLuint ob j)
2 {
3 i n t i n fo logLeng th = 0;
4 i n t charsWr i t ten = 0;
5 char ∗ in foLog ;
6

7 glGetShader iv (obj , GL_INFO_LOG_LENGTH, &in fo logLeng th) ;
8

9 i f (i n fo logLeng th > 0)
10 {
11 in foLog = (char ∗) mal loc (in fo logLeng th) ;
12 glGetShaderInfoLog (obj , in fo logLength , &charsWr i t ten ,

in foLog) ;
13 p r i n t f ("%s \ n " , in foLog) ;
14 f r ee (in foLog) ;
15 }
16 }

PV227 GPU programming 55 / 56

GLSL query example

1 vo id pr in tProgramInfoLog (GLuint ob j)
2 {
3 i n t i n fo logLeng th = 0;
4 i n t charsWr i t ten = 0;
5 char ∗ in foLog ;
6

7 glGetProgramiv (obj , GL_INFO_LOG_LENGTH, &in fo logLeng th) ;
8

9 i f (i n fo logLeng th > 0)
10 {
11 in foLog = (char ∗) mal loc (in fo logLeng th) ;
12 glGetProgramInfoLog (obj , in fo logLength , &charsWr i t ten ,

in foLog) ;
13 p r i n t f ("%s \ n " , in foLog) ;
14 f r ee (in foLog) ;
15 }
16 }

PV227 GPU programming 56 / 56

