
Web application security
Juraj Komloši

Agenda

• Why is web app security so important?

• OWASP Top 10

• Cross-site scripting (XSS)

• SQL injection

• Input validation

• Client/server validation

• Session attack – session fixation

• Clickjacking

• CSRF

• Argument injection

Why is web application security so important?

• Identity theft (session attacks)
– Allow access to illegitimate functions or data

• Compromising application (SQLi, XSS, LDAP...)
– Availability, integrity and confidentiality could be affected

• Loss of service - DoS, DDoS

• Loss of reputation for organizations

• Attack’s reasons:
– Commercial - Sony’s PlayStation Network, Acer Europe,

– Political - Iran's Ministry of Foreign Affairs,

– Profit - e-shop administration, BitCoin stock exchange

OWASP Top 10

• OWASP - The Open Web Application Security Project
– open-source web application security project

• OWASP Development Guide
– covers an extensive array of application-level security issues, from SQL
injection through modern concerns such as phishing, credit card
handling, session fixation, cross-site request forgeries, compliance, and
privacy issues.

• References
– OWASP official site

– OWASP development guide

– OWASP testing guide

https://www.owasp.org/
https://www.owasp.org/
https://www.owasp.org/
https://www.owasp.org/index.php/Projects/OWASP_Development_Guide
https://www.owasp.org/index.php/Projects/OWASP_Development_Guide
https://www.owasp.org/index.php/Projects/OWASP_Development_Guide
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project

2013 Application Vulnerability Population

XSS, 26%

Info leakage,
16%

Session
management,

16%

Authentication
& Authorization,

13%

CSRF, 8%

SQL injection,
6%

Web server
version, 5%

Remote code
execution, 5%

Web server
configuration,

3%

Unauthorized
directory access,

2%

http://blog.cenzic.com/2013/03/application-vulnerability-trends-report/

Cross-site scripting (XSS)

• Enables attackers to inject client-side script

• Inject malicious code segments that are run by your server in
the victim's browser

• Main types:
– Persistant - the code is added to the web site

– Non-persistant - the malicious code is contained in the URL

• Common targets:
– Cookies

– Social engineering

• XSS sources:
– URL, Flash, videos…

Cross-site scripting (XSS)

• Result:
– Identity theft

– Accessing sensitive or restricted information

– Potential DoS attack

• Finding XSS:
– Insert javascript code to:

• GET/POST parameters, form fields etc.

• Avoiding XSS:
– Encode user inputs -> HttpUtility.HtmlEncode

– Web.config - > validateRequest="true"

– Protect cookies -> HttpOnly flag

• Demo

SQL injection

• Executing SQL code through a web application

• Result:
– Attacker can read all data or the database schema, change it, edit it

• Finding SQL injection:
– Insert ‘ (aphostrophe) to:

• All inputs – GET/POST parameters, input fields

• Avoiding SQL injection:
– Escaping aphostrophe

– Stored procedures -> use query parameters

– Do not use ‘exec’ function

• Demo

Input validation

• All user input is evil

• White list validation
– Involves defining what IS authorized

• Character-set – accept only expected set of characters
– Amount - digits, zip code – regular expression

– US states – drop down list

• Data format – accept only data containing the proper format
– e-mail – letters, numbers, „@“, dots

• Escaping special characters

• Black list validation
– Involves defining what IS NOT authorized

– Code names – can not contain special chars ($#_.,)

Client/Server validation

• Client validation:
– Gives the user immediate feedback

• Server validation:
– More advanced validations

• Why do we need server side as well as client side validation?
– Client side validation may be subverted

• Common mistake:
– Disabled UI doesn’t allow to perform any actions

– Form inputs are not validated

• Demo

http://localhost/MuniDemo/CMSModules/Membership/Pages/Users/User_Edit_General.aspx?userid=68&siteid=1

Session attack – session fixation

• Attacker fixes the user’s session ID before the user logs into
target server

• Eliminate the need to obtain user’s session ID afterwards

• How it works:
– Attacker logs in to the server (get SessionID)

– Attacker sends link containing logon page with session ID to the victim

– Victim opens link (session already exists, a new one is not created)

– Victim logs in (using attacker session ID)

– Attacker can access victim’s account

Session attack – session fixation

Session attack – session fixation

• Fixation SessionID can be done by:

– URL argument
• ~/login.aspx?session=123456

– Hidden field
• Impractical

– Cookie
• The most commonly used / the most vulnerable

• How can be cookie issued to the browser
– Cross-site scripting (XSS)-> document.cookie=“123456”

– Meta tag injection
• /<meta%20http-equiv=Set-Cookie%20content="sessionid=1234;
%20Expires=Friday,%201-Jan-2010%2000:00:00%20GMT”>.idc

• Demo

Clickjacking

• UI is redesigned to carry some script code along the original
code

• Tricks a user into performing undesired actions by clicking on
a concealed link

• Clicking the visible buttons on the clickjacked page vs.
performing actions on the hidden page

• How to avoid clickjacking:
– X-Frames-Options: sameorigin | deny

• Demo

http://facebookhtml.blogspot.cz/

CSRF - Cross Site Request Forgery

• Allows an attacker to take arbitrary actions as the victim
against a web site

• How it works:
– Victim is logged on internet banking portal

– Attacker crafts HTML image element that references to bank portal
•

– Victim visits attacker web site

– Victim’s browser execute request with victim’s cookie

• How to avoid CSRF:
– Using POST instead of GET

– Implementing secret tokens

• Demo

Argument injection

• Attack based on tampering with input parameters

• Result:
– Attacker can see data which he normally can not see

– Attacker can modify data which he normally can not modify

• How to find argument injection:
– Focus on query parameters

– Try to enumerate integer values in query strings (e.g. IDs)

• How to avoid argument injection:
– Changing query parameters to e.g. GUID (less predictive)

– Check user permissions before modifying objects

• Demo

Q&A

