Annotation Framework – Recent state of the application

Honza Botorek, Petra Budíková, Michal Batko

Automatic image annotation – What is it?

Main goal = annotate unknown images with relevant descriptive words

Annotation Framework: Current Approach I.

- Given image CBIR performed (MUFIN) textual data are retrieved (descriptions)
 - iteratively processed by expansion/transformation/reduction members => output

Annotation Framework: Current Approach II. Annotation Forming

- Fundamental technology: Wordnet
- Words are interrelated by meanings basic relation = synonymy
 - synonymous set of words synset (car, auto, automobile, machine = 1 object)
- Important relations utilized to group words together:
 - Hypernymy
 - Dog IS-A Animal
 - Hyponymy
 - Animal HAS-DESCENDANT dog
 - Meronymy
 - Dog HAS-PART tail, head, ears...
 - "Gloss relation"
 - "... (dog) has been domesticated by man since prehistoric times ... "
 - □ => domesticated, man, prehistoric, times
 - When relation between 2 words is found, group is formed = 2 words are related

WordNet hypernymy tree – example

Limitations of current solution

Grouping forms large set of words – mutually unrelated

- Not structured output from the framework
 - Currently : (dog, puppy, boy, son, child, house)
 - Idea: (animals:{dog, puppy}, persons:{boy, child, son}, buildings{house}
- Accuracy of annotation is not very high
- Annotation Forming tools space for improvement

Proposed solution I.

Define a hierarchy of categories that enables to refine annotation results

- 2 phases: select proper categories; use categories to enrich original query
- Easier and more accurate annotation process
 - Structured output
- Ground truth for testing
- User-driven relevance feedback
 - Idea: Iterative process of image annotation
 - Solid hierarchy background is needed

Proposed solution II.

- Add other sources of information (relations among words/objects)
 - Wikipedie: project DBPedia
 - Final thesis topic
- Extend classifiers utilization
 - Indoor x outdoor; buildings detection...
 - OpenCV: Good support for classifiers developing
 - Final thesis topic?

Category tree challenges

How to create/select ontology categories?

How to use such categories in the annotation process?

Which relations encode into ontology?

Categorization – Ontology Motivation

Map words into categories to improve a quality of image annotation"

What is an ontology

- "An ontology is a set of concepts things, events and relations. These concepts form a vocabulary for exchanging information."
- Relations encoding:
 - <fruit> <subclass_of> <food>
 - <Movie XY> <hasStar> <John Newman>
 - < hasStar > <domain> <movie>
 - < hasStar > <range> <actor>
- No general ontology exists
- ImageCLEF, LSCOM, DBpedia ontology
- Some examples of specialized ones
 - Food, family, wines, financial institutions...

How to create an ontology? Category Tree I

- Map categories to vital synsets in WordNet structure
- Fundamental/root categories
 - 13 selected (animals, objects, landscape...)
 - sub-categories for each "root category"
 - Animals birds, mammals, reptiles
 - \square Mammals cats, dogs...
 - How categories were selected?
 - Wordnet parsing of noun synsets with a high number of hyponyms
 - Large ontologies checking (LSCOM, ImageCLEF)

Category Tree II – part of the tree

What relations incorporate into ontology? Category tree III

- IS-A relation: Fundamental requirement to hold relations of the type:
 - Fiats ARE cars; Cars ARE Vehicles; Vehicles ARE Objects ...
 - From more exact categories to more general ones
- Incorporation of <u>foreign ontologies</u>
 - More specialized hiearchies to some narrow field (eg. food, cars)

Relations encoding into the tree

- opposites (black vs white)
- "person EAT food" etc.

How to use the ontology? Category Tree IV

Summary

- Ontology constructed on WordNet structure is designed
- The ontology helps us to improve annotation results
 - It can produce more general or more specific annotation
 - Different kinds of relations can be encoded
- The ontology is extensible and customizable
- Near future work
 - Implement the ontology into the annotation process
 - Incorporate another ontologies
- Future work

Employ the ontology for user relevance feedback