Content-Based Annotation and Classification Framework: A General Multi-Purpose Approach

Michal Batko, Jan Botorek, Petra Budikova, Pavel Zezula

Laboratory of Data Intensive Systems and Applications Faculty of Informatics, Masaryk University, Brno

IDEAS 2013

Outline

- Motivation
 - Why annotations?
 - State-of-the-art in multimedia annotation
- General annotation model
 - Global architecture
 - Application to selected tasks
 - Specification of components
- Web image annotation
 - Current implementation
 - Experimental evaluation
- Conclusions and future research directions

Motivation

Yellow flower

dandelion

nature

Taraxacum officinale

Flower, yellow, dandelion, detail, close-up, nature, plant, beautiful

The first dandelion that bloomed this year in front of the White House.

"Image is worth a thousand words."

Why do we need the thousand words?

- Keyword-based image retrieval
 - Popular and intuitive
 - Needs pictures with text metadata, we do not want to create them manually
- Information seeking: "What is in the photo I just took?"
 - Tourist information / Plant identification / ...
- Impaired users
- Classification tasks
 - Scientific data (medicine, astronomy, chemistry, ...)
 - Improper content identification
 - Personal image gallery
- Data summarization: "What images are on this computer?"
- Not only images!
 - Sound, video,

Several dimensions of the annotation problem

- Input
 - Image / Image and seed keyword / Image and text / Text
- Type of information needed
 - Identification / Detection / Categorization
- Vocabulary
 - Unlimited vocabulary / Controlled vocabulary
- Form of annotation required
 - Sentence / Set of keywords / All relevant categories / A single category / Localization in a taxonomy
- Interactivity
 - Online / offline annotation
- **Easy tasks**: identify a single relevant category from a short list
- Difficult tasks: wide (unlimited) vocabulary, "all relevant needed", online processing, very little or no input text

State-of-the-art text-extraction techniques

- Pure text-based
 - Analyze the text on a surrounding web page
- Content-based / Content- and text-based
 - Mainly exploit visual properties (+ text when available)
- Content-based annotation scenario:
 - Basic annotation
 - Model-based: train a model for each concept in vocabulary
 - Search-based: kNN search in annotated collection
 - Annotation refinement
 - Statistical
 - Ontology-based
 - Secondary kNN search

• ...

Existing approaches – summary

- Model-based techniques:
 - + Specialized classifiers can achieve high precision
 - + Fast processing
 - Training feasible only for a limited number of concepts feasible, high-quality training data needed
- Search-based techniques:
 - + Can exploit vast amounts of annotated data available online
 - + No training needed, no limitation of vocabulary
 - Costly processing when large datasets need to be searched
 - Content-based similarity measures often not precise enough
- Summary of state-of-the-art:
 - Mostly specialized solutions for a specific type of application
 - Reasonable results only for simple tasks

Our approach

- Facts
 - Experiments show that state-of-the-art solutions are not very successful for complex problems
 - Psychologic research suggests hierarchical annotation
- Our vision:
 - Broad-domain annotation is a complex process, needs to be modeled as such
 - Multiple processing phases
 - Modular design
 - Hierarchic annotation
 - Combine multiple knowledge sources
 - User in the loop
 - The same infrastructure can be used for different applications (annotation, classification, ...)
 - The principal components are the same
 - Easy evaluation, comparisons

General annotation model

General annotation model (cont.)

- Framework components
 - Query
 - Image / image + text / (text)
 - Knowledge sources
 - Annotated image collection, WordNet, ontologies, internet, ..., user
 - Annotation-record
 - Query + candidate keywords, weights, any other knowledge
 - Processor modules
 - Expander, transformer, reducer
 - Evaluation scenarios
- Properties
 - Clear structure, modularity
 - Can be adapted to various annotation/classification tasks
 - Supports extensive experiments, comparison of techniques

Simple examples

Basic search-based annotation

Advanced example: Hierarchic image annotation

Processing modules

"The brain of the annotation process"

- Expanders
 - Provide candidate keywords
 - Visual-based nearest-neighbor search
 - Similarity measured by MPEG-7 global descriptors
 - Metric search provided by efficient M-index structure
 - Knowledge source: annotated image collection
 - Face detection software
 - Luxand FaceSDK
 - commercial library for detection and recognition of faces
 - Depending on number of faces detected, people-related concepts are added to annotation-record

Processing modules (cont.)

- Transformers
 - Adjust weights of candidate keywords
 - Basic weight transformer
 - Frequency of a keyword in the descriptions of similar images
 - Similarity score of each image with the particular keyword
 - Knowledge source: descriptions of similar images
 - Semantic transformer
 - Uses WordNet hierarchies to cluster related words
 - Keyword weight increased proportionately to the size of containing cluster
 - Knowledge source: WordNet
- Reducers
 - Remove unsuitable candidates
 - Syntactic cleaner
 - Stopword removal, translation, spell-correction
 - Knowledge sources: WordNet, dictionaries, Wikipedia

Web image annotation problem

Task specification

"Given an image, provide the *K* most relevant keywords that describe the content of this image."

- Use case
 - A professional photographer uploading images to a photo-selling site needs to provide accompanying keywords to enable text search

Basic solution

Budikova, Batko, Zezula: Online image annotation. SISAP 2011.

Web image annotation problem (cont.)

A more complex solution

Web image annotation – evaluation

Methods under comparison

- Original search-based annotation
- Cleaned keywords
- Boosting by distance
- Clustering by WordNet meaning
- Face detector boosting
- Face detector enrichment
- Evaluation methodology
 - 160 test queries
 - Categories easy/medium/difficult
 - 20 best keywords requested
 - Result relevance evaluation:
 - User-provided (result relevance assessments)
 - Automatic (comparison to image description provided by author)

Web image annotation – evaluation (cont.)

Easy query

entertainment, art, sparkling, event, enjoyment, show, display, air, celebration, festival, flash, level, fireworks, cracker, explosion, fire, excitement, firecracker, light, bang

Medium query

blossom, location, <u>plant</u>, bird, food, <u>trees</u>, <u>natural</u>, <u>citrus</u>, flowers, generic, antique, destinations, <u>nature</u>, recreation, <u>tree</u>, <u>foliage</u>, <u>botany</u>, <u>fruit</u>, determination, flower

Difficult query

form, station, <u>antique</u>, <u>interior</u>, <u>frame</u>, <u>bookcase</u>, <u>indoors</u>, group, animal, antiques, snack, <u>person</u>, construction, food, chinese, <u>study</u>, <u>wood</u>, architecture, dynasty, building

Web image annotation – evaluation (cont.)

original frequency-based annotation
□ cleaned keywords
boosting by distance
clustering by WordNet meaning
clustering and face detector boosting
clustering and face detector enrichment

Processing costs

Pipeline type	k = 5	k = 10	k = 15	k = 30
original frequency-based annotation	$0.94\mathrm{s}$	1.34 s	$4.35\mathrm{s}$	$7.44\mathrm{s}$
cleaned keywords ^a	$0.94\mathrm{s}$	$1.34\mathrm{s}$	$4.35\mathrm{s}$	$7.44\mathrm{s}$
boosting by distance	$1.04\mathrm{s}$	$1.44\mathrm{s}$	$4.53\mathrm{s}$	$8.15\mathrm{s}$
clustering by WordNet meaning	$1.98\mathrm{s}$	$2.94\mathrm{s}$	$4.52\mathrm{s}$	$13.89\mathrm{s}$
clustering & face detector boosting	$2.24\mathrm{s}$	$3.27\mathrm{s}$	$4.81\mathrm{s}$	$14.47\mathrm{s}$
clustering & face detector enrichment	2.13 s	$3.18\mathrm{s}$	$4.74\mathrm{s}$	$14.33\mathrm{s}$

Conclusions

- Image annotation remains a challenging task
 - Broad domains, interactive applications, lack of training data, ...
- Our contributions
 - General annotation model & implementation framework
 - Implementation & evaluation of several processing components
 - Improved annotation tool

http://disa.fi.muni.cz/prototype-applications/image-annotation/

- Future work
 - Refinement of semantical analysis
 - Development of new components, hierarchic annotation processing
 - Relevance feedback strategies for image annotation

More experimental results

Figure 8: Influence of k on annotation precision (left), Corel dataset evaluation results (right).