Inverted Indexing for Information retrieval

Adam Hadraba

Table of contents

- Motivation
- Inverted index
- Vector space model
- Constructing scalable inverted index

Motivation

- Sequential scan is not efficient
- Looking for structure that provides background for:
 - Processing large number of queries over massive amount of data each second
 - Data set changes
 - Different kinds of queries
 - Ranking results
 - "Fast" response & dealing w/ hardware limitations

Inverted index

- Most common indexing method used in IR systems
- Way to avoid linearly scanning the texts
 - Index in advace
- Widely used in search engines
- Normally, documents lists of words
 - Inverted index for each word lists of documents

Creating Inverted index

- 1. Collect documents to be indexed
- 2. Tokenize the text
- 3. Preprocessing
- 4. Indexing

Dictionary						
term	doc. freq		Postings			
Seminář	20		1;2	3;5	5;1	6;2
Laboratoř	15	├	1;5	2;5	5;3	10;1
DISA	33	├ ──→	2;3	4;1	5;1	7;8

•••

Size

- Dictionary:
 - *Heap's law:* $V = O(n^{\beta}), 0.4 < \beta < 0.6$
 - TREC 2: 1GB text, 5MB dictionary
- Postings
 - Worst case one per ocurrence of a word in a text: O(n)
- Inverted index are big typically 10-100% the size of collection of documents
- Most of the time compression is needed

Search subsystem

Search subsystem

Search subsystem

Retrived document set: 2, 5

Not simple as that

- Support for different queries:
 - Boolean, proximity, phrase, wildcard...
 - More complex postings
 - Additional indexes
 - ► increase in complexity
- Retrieved document set could be huge
 - We need to rank them relevantly

Vector space model

Vector space model

- Idea: A user's query can be viewed as a short document
- Documents and queries are represented as vectors in term space (both in the same space)
- We are able to measure proximity rank retrieved documents

Vector space model cont.

- Two documents are similar, if they contain some of the same terms.
- We can take into account / weighting:
 - Lenght of documents
 - Number of terms in common
 - Unusual or common words
 - How many times each term appears
- Documents are represented as "bag of words"
 - Words are terms with no order
 - ► Thus the document

John is quicker than Mary. Is indistinguishable from *Mary is quicker than John.*

Vector space model cont.

- Term vector space
 - *n*-dimensional space
 - *n* number of different terms/tokens used to index a set of documents

• Vector

• Document *i*, d_{i} , represented by a vector. Its magnitude in dimension *j* is w_{ij} , where:

<i>w_{ij}></i> 0	if term j occurs in document i
<i>w_{ij}</i> = 0	otherwise

• *w_{ij}* is the weight of term *j* in document *i*.

Documents in 3-dimensional term vector space

Assumption: Documents that are "close together" in space are closer in meaning

Measuring similarity

 Eg. <u>Cosine angle</u> between the docs d₁ and d₂ determines doc similarity

$$\cos\left(\theta\right) = \frac{\mathbf{d}_{1} \cdot \mathbf{d}_{2}}{|\mathbf{d}_{1}| |\mathbf{d}_{2}|}$$

 $\cos(\theta) = 1 - documents$ exactly the same;

 $\cos(\theta) = 0 - totally different.$

Constructing inverted index

Hardware dependencies

- Memory is faster than disc
 - Seek time, transfer from disc
 - ► As much data as possible in memory
- Better with SSD
- Disc to memory handled by system bus, not processor
 - Reading compressed data and uncompressing usually faster than reading uncompressed data

Blocked Sort-Based Indexing (BSBI)

- Memory is insufficient, we need to use disc
- Map term to termID
- 1. Divide documents collection into blocks
 - Each block fits into main memory
- 2. For each block
 - Sort the termID-docID pairs
 - Store intermediate sorted result on disc
- 3. Merge all intermediate results into the final result
 - Maintaining small read and write buffers
- Assumption: dictionary fits into main memory, termID available online for each document

Blocked Sort-Based Indexing (BSBI)

Blocked Sort-Based Indexing (BSBI)

• Problems:

- Dictionary must fit into memory
- We need dictionary to map a term to termID
- term-docID postings instead of termID-docID
 - But intermediate files would become very large.
 - Scalable, but slow.

Single Pass In-Memory Indexing (SPIMI)

- Dictionary won't fit into memory
- 1. Dictionary for each block
- 2. Add a posting directly to its posting list
 - No sorting
 - No storage of termID-docID pairs
 - Posting list doubles allocated space each time it's full
 - Complete inverted index for each block
- 3. Merge into one big index
- Compression makes SPIMI more efficient
 - Postings
 - Dictionary terms
 - Processing larger blocks

Distributed indexing

- For web-scale indexing
 - Distributed computer cluster
 - Individual machines are fault-prone
- Maintain a master machine directing the indexing job
- Break up indexing into set of (parallel) tasks
- Master machine assigns tasks

Distributed indexing cont.

- Two sets of tasks
 - Parsers
 - Inventers
- Braking the input documents into splits (corresponding to blocks in BSBI/SPIMI)

Distributed indexing

Parsers

- Master assign split to an idle parser machine
- Parser reads a document and emits term-doc pairs
- Parser writes pairs into *j* partitions
- Each partition is for a range terms' first letter
 - (e.g. **a-f**, **g-p**, **q-z**) here *j*=3
- Inverter
 - Collects all term-doc pairs from one term-partition
 - Sorts and writes to postings lists

Distributed indexing – data flow

Dynamic indexing

- Untill now, we assumed that collections are static
- New documents need to be iserted
- Documents are deleted and modified
- Postings upades for terms already in dictionary
- New terms added to dictionary

Dynamic indexing

- "Big" main index
- New documents go into "small" auxiliary index
- Search across both, merge results
- Deletions
 - Invalidation bit-vector
- Periodically, re-index into one main index

Dynamic indexing

- Problems:
 - Poor performance during merge
 - If we have separate files for each postings list, merging is efficient (simple append)
 - Lots of files not efficient for O/S
- In reality: somewhere in between
 - Split large postings lists
 - Collect postings list of lenght 1 in one file etc.

We covered

- Structure of inverted index
- Ranking Vector Space Model
- Constructing of inverted indexes

Thank You.