
Inverted Indexing
for Information retrieval

Adam Hadraba

Table of contents

•Motivation

• Inverted index

• Vector space model

• Constructing scalable inverted index

Motivation

• Sequential scan is not efficient

• Looking for structure that provides background for:

• Processing large number of queries over massive
amount of data each second

• Data set changes

• Different kinds of queries

• Ranking results

• “Fast” response & dealing w/ hardware limitations

Inverted index

•Most common indexing method used in IR systems

•Way to avoid linearly scanning the texts
• Index in advace

•Widely used in search engines

•Normally, documents – lists of words
• Inverted index — for each word lists of documents

Creating Inverted index

1. Collect documents to be indexed

2. Tokenize the text

3. Preprocessing

4. Indexing

Size

• Dictionary:
• Heap‘s law: V = O(nβ), 0.4 < β < 0.6

• TREC – 2: 1GB text, 5MB dictionary

• Postings
• Worst case – one per ocurrence of a word in a text: O(n)

• Inverted index are big – typically 10-100% the size of
collection of documents

►Most of the time compression is needed

Search subsystem

Index
database

parse query

terms

query tokens

operations*

ranking*

relevant
document set

ranked
document set

retrieved
document set

* optional
operation

Preprocessing*

Index
database

Search subsystem
parse query

terms

query tokens

operations*

ranking*

relevant
document set

ranked
document set

retrieved
document set

* optional
operation

Preprocessing*

Parsed query:
Laboratoř AND DISA

Index
database

Search subsystem
parse query

terms

query tokens

operations*

ranking*

relevant
document set

ranked
document set

retrieved
document set

* optional
operation

Preprocessing*

Preprocessed query:
lab AND disa

Index
database

Search subsystem
parse query

terms

query tokens

operations*

ranking*

relevant
document set

ranked
document set

retrieved
document set

* optional
operation

Preprocessing*

Relevant document set:
1, 2, 5, 10…
2, 4, 5, 7…

Index
database

Search subsystem
parse query

terms

query tokens

operations*

ranking*

relevant
document set

ranked
document set

retrieved
document set

* optional
operation

Preprocessing*

Operation intersection

Documents containing “lab”:
1 | 2 | 5 | 10 …

Documents containing “disa”:
2 | 4 | 5 | 7 …

Relevant document set:
1, 2, 5, 10…
2, 4, 5, 7…

Index
database

Search subsystem
parse query

terms

query tokens

operations*

ranking*

relevant
document set

ranked
document set

retrieved
document set

* optional
operation

Preprocessing*

Retrived document set:
2, 5

Not simple as that

• Support for different queries:
• Boolean, proximity, phrase, wildcard…

• More complex postings

• Additional indexes

► increase in complexity

• Retrieved document set could be huge
• We need to rank them relevantly

Vector space model

Vector space model

• Idea: A user‘s query can be viewed as a short document

• Documents and queries are represented as vectors in term
space (both in the same space)

► We are able to measure proximity — rank retrieved
documents

Vector space model cont.

• Two documents are similar, if they contain some of the same terms.

• We can take into account / weighting:
• Lenght of documents
• Number of terms in common
• Unusual or common words
• How many times each term appears

• Documents are represented as “bag of words”
• Words are terms with no order
► Thus the document

John is quicker than Mary.
Is indistinguishable from

Mary is quicker than John.

Vector space model cont.

• Term vector space

• n-dimensional space

• n – number of different terms/tokens used to index a set of documents

• Vector

• Document i, di, represented by a vector. Its magnitude in dimension j is
wij, where:

wij > 0 if term j occurs in document i

wij = 0 otherwise

• wij is the weight of term j in document i.

Documents in 3-dimensional
term vector space

Assumption: Documents that are “close together” in space are closer
in meaning

t1

t2

d1

t13

t12
t11

t3

Measuring similarity

• Eg. Cosine angle between the docs d1 and d2 determines
doc similarity

cos () =

cos () = 1 – documents exactly the same;

cos () = 0 – totally different.

d1.d2

|d1| |d2|

Constructing inverted index

Hardware dependencies

• Memory is faster than disc
• Seek time, transfer from disc

► As much data as possible in memory

• Better with SSD

• Disc to memory handled by system bus, not processor
• Reading compressed data and uncompressing

usually faster than

reading uncompressed data

Blocked Sort-Based Indexing (BSBI)

• Memory is insufficient, we need to use disc

• Map term to termID

1. Divide documents collection into blocks
• Each block fits into main memory

2. For each block
• Sort the termID-docID pairs
• Store intermediate sorted result on disc

3. Merge all intermediate results into the final result
• Maintaining small read and write buffers

• Assumption: dictionary fits into main memory, termID available
online for each document

Blocked Sort-Based Indexing (BSBI)

Blocked Sort-Based Indexing (BSBI)

• Problems:
• Dictionary must fit into memory

• We need dictionary to map a term to termID

• term-docID postings instead of termID-docID
• But intermediate files would become very large.

• Scalable, but slow.

Single Pass In-Memory Indexing (SPIMI)

• Dictionary won‘t fit into memory

1. Dictionary for each block

2. Add a posting directly to its posting list
• No sorting
• No storage of termID-docID pairs
• Posting list doubles allocated space each time it‘s full

► Complete inverted index for each block
3. Merge into one big index

• Compression makes SPIMI more efficient
• Postings
• Dictionary terms
► Processing larger blocks

Distributed indexing

• For web-scale indexing
• Distributed computer cluster

• Individual machines are fault-prone

• Maintain a master machine directing the indexing job

• Break up indexing into set of (parallel) tasks

• Master machine assigns tasks

Distributed indexing cont.

• Two sets of tasks
• Parsers

• Inventers

• Braking the input documents into splits (corresponding to
blocks in BSBI/SPIMI)

Distributed indexing

• Parsers
• Master assign split to an idle parser machine

• Parser reads a document and emits term-doc pairs

• Parser writes pairs into j partitions

• Each partition is for a range terms‘ first letter
• (e.g. a-f, g-p, q-z) — here j=3

• Inverter
• Collects all term-doc pairs from one term-partition

• Sorts and writes to postings lists

Distributed indexing – data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map

phase

Segment files
Reduce

phase

Dynamic indexing

• Untill now, we assumed that collections are static

• New documents need to be iserted

• Documents are deleted and modified

► Postings upades for terms already in dictionary

► New terms added to dictionary

Dynamic indexing

• “Big” main index

• New documents go into „small“ auxiliary index

• Search across both, merge results

• Deletions
• Invalidation bit-vector

• Periodically, re-index into one main index

Dynamic indexing

• Problems:
• Poor performance during merge

• If we have separate files for each postings list, merging is
efficient (simple append)

• Lots of files — not efficient for O/S

• In reality: somewhere in between
• Split large postings lists

• Collect postings list of lenght 1 in one file etc.

We covered

• Structure of inverted index

• Ranking – Vector Space Model

• Constructing of inverted indexes

Thank You.

