Inverted Indexing
for Information retrieval

Adam Hadraba

Table of contents

* Motivation

* Inverted index

 Vector space model

» Constructing scalable inverted index

Motivation

« Sequential scan is not efficient
 Looking for structure that provides background for:

 Processing large number of queries over massive
amount of data each second

- Data set changes

- Different kinds of queries

« Ranking results

 “Fast” response & dealing w/ hardware limitations

INnverted index

* Most common indexing method used in IR systems

- Way to avoid linearly scanning the texts
 Index in advace

* Widely used in search engines

* Normally, documents - lists of words
* Inverted index — for each word lists of documents

Creating Inverted index

1. Collect documents to be indexed

2. Tokenize the text

3. Preprocessing

4. Indexing | ictionary |
Seminar 20 —>(1;2 3:5 51 6,2
Laborator 15 — | 1:5 2:5 5:3 10:1

DISA 33 — | 2,3 4,1 5,1 7,8

Size

* Dictionary:
« Heap’s law:V = 0(nf), 0.4<B<0.6
« TREC - 2: 1GB text, 5MB dictionary
* Postings
- Worst case - one per ocurrence of a word in a text: O(n)

* Inverted index are big - typically 10-100% the size of
collection of documents

» Most of the time compression is needed

Search supsystem
&/ parse query

. query tokens

A 4

ranked
document set

. i *
ranking* Preprocessing

retrieved
document set

operations®

A

Index
database

* optional relevant
operation document set

Search supsystem

Parsed query:
lé\/ barse guery Laborato¥ AND DISA
) query tokens

ranked
document set

- i *
ranking* Preprocessing

retrieved
document set

operations*

A

Index
database

* optional relevant
operation document set

Search supsystem
&/ parse query

. query tokens

Preprocessed query:
lab AND disa

A 4

ranked
document set

- i *
ranking* Preprocessing

retrieved
document set terms

operations*

A

Index

* optional relevant database
operation document set

term e T _
Search subsystem s o] hr R

Laborator 15 1:5 2:5 5.3 10:1

DISA 33 2:3 4:1 51 7:8
&/ D parse query

A 4

query tokens Relevant document set:
ranked ;' ‘21' :' ;0
document set , 4,9, /...
ranking* Preprocessing®
retrieved
document set terms

operations*

A

Index

* optional relevant database
operation document set

Relevant document set:

Search subsystem 1,2,5,10..

2,4,5,7...
&/ parse query Operation intersection
. query tokens

A 4

Documents containing “lab”:

ranked 112|5]10..
document set

n

Documents containing “disa”:
2|4|5]|7..

Preprocessing*

ranking*

retrieved
document set

terms

operations*

Index
database

* optional relevant
operation document set

Searcn subsystem

&

.

ranked
document set

A 4

parse query

ranking*

retrieved

document set

* optional
operation

operations*

query tokens

Preprocessing*

relevant
document set

Index
database

Retrived document set:
2,5

Not simple as that

 Support for different queries:

- Boolean, proximity, phrase, wildcard...
« More complex postings
« Additional indexes
P increase in complexity

 Retrieved document set could be huge
« We need to rank them relevantly

Vector space model

Vector space model

* Idea: A user’'s query can be viewed as a short document

- Documents and queries are represented as vectors in term
space (both in the same space)

» We are able to measure proximity — rank retrieved
documents

Vector space model cont.

« Two documents are similar, if they contain some of the same terms.

- We can take into account / weighting:
« Lenght of documents
* Number of terms in common
« Unusual or common words
« How many times each term appears

- Documents are represented as “bag of words”
- Words are terms with no order
» Thus the document
John is quicker than Mary.
Is indistinguishable from
Mary is quicker than John.

Vector space model cont.

» Jerm vector space
- ndimensional space
« n-number of different terms/tokens used to index a set of documents

* Vector
- Document j, d, represented by a vector. Its magnitude in dimension jis
W where:
w;> 0 if term j occurs in document i
w;=0 otherwise

* wjis the weight of term jin document /

Documents in 3-dimensional
term vector space

information

Assumption: Documents that are “close together” in space are closer
in meaning

Measuring similarity

 Eg. Cosine angle between the docs d, and d, determines
doc similarity

_ dyud,
Cos (0) = d,| [d;]

cos (0) = 1 - documents exactly the same;
cos (0) = 0 - totally different.

Constructing inverted index

Hardware dependencies

 Memory is faster than disc
 Seek time, transfer from disc
» As much data as possible in memory

e Better with SSD

 Disc to memory handled by system bus, not processor
- Reading compressed data and uncompressing
usually faster than
reading uncompressed data

Blocked Sort-

Based Indexing (

« Memory is insufficient, we need to use disc

* Map term to termiD

1. Divide documents collection into blocks
« Each block fits into main memory

2. For each block

« Sort the termID-docID pairs
« Store intermediate sorted result on disc

3. Merge all intermediate results into the final result
- Maintaining small read and write buffers

55

S1)

« Assumption: dictionary fits into main memory, termID available
online for each document

Slocked Sort-Based Indexing (

postings
to be merged

brutus d3 brutus
caesar d4 caesar
noble d3 julius
with d4 killed

d2
dl
dl
d2

brutus
brutus
caesar
caesar
julius
killed
noble
with

d2
d3
dl
d4
dl
d2
d3
d4

/

disk

merged
postings

55

S1)

Blocked Sort-

* Problems:

Based Indexing (

 Dictionary must fit into memory
- We need dictionary to map a term to termiD

« term-docID postings instead of termID-docID
- But intermediate files would become very large.

« Scalable, but slow.

55

S1)

Single Pass In-Memory Indexing (SPIMI)

* Dictionary won‘t fit into memory

1. Dictionary for each block
2. Add a posting directly to its posting list

* No sorting
« No storage of termID-docID pairs
« Posting list doubles allocated space each time it's full

» Complete inverted index for each block
3. Merge into one big index

« Compression makes SPIMI more efficient
» Postings
« Dictionary terms
» Processing larger blocks

Distributed indexing

 For web-scale indexing
- Distributed computer cluster
* Individual machines are fault-prone

« Maintain a master machine directing the indexing job
* Break up indexing into set of (parallel) tasks
« Master machine assigns tasks

Distributed indexing cont.

 Two sets of tasks
 Parsers
* |[nventers

 Braking the input documents into splits (corresponding to
blocks in BSBI/SPIMI)

Distributed indexing

* Parsers

Master assign split to an idle parser machine

Parser reads a document and emits term-doc pairs

Parser writes pairs into j partitions

Each partition is for a range terms’ first letter

* (e.g. a-f, g-p, q-z) — here j=3

* Inverter
* Collects all term-doc pairs from one term-partition
 Sorts and writes to postings lists

Distributed indexing — data flow

as_gigﬂx[MaSte I’}

e Postings
3 ~_
I

% a-f|g-p|q-z ﬂ‘/
0] ¢} ¢} ¢} \g_-/p
splits -) ﬂ%
=/ Cparser —{af|g-plaz A

Map Segment files Reduce

phase phase

Dynamic indexing

* Untill now, we assumed that collections are static

* New documents need to be iserted

« Documents are deleted and modified

» Postings upades for terms already in dictionary
» New terms added to dictionary

Dynamic indexing

* “Big"” main index
* New documents go into ,,small” auxiliary index
 Search across both, merge results

 Deletions
e Invalidation bit-vector

* Periodically, re-index into one main index

Dynamic indexing

* Problems:
« Poor performance during merge

- If we have separate files for each postings list, merging is
efficient (simple append)

« Lots of files — not efficient for O/S
* In reality: somewhere in between
- Split large postings lists
* Collect postings list of lenght 1 in one file etc.

We covered

e Structure of inverted index
« Ranking - Vector Space Model
 Constructing of inverted indexes

Thank You.

