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Motivation

« Sequential scan is not efficient
 Looking for structure that provides background for:

 Processing large number of queries over massive
amount of data each second

- Data set changes

- Different kinds of queries

« Ranking results

 “Fast” response & dealing w/ hardware limitations



INnverted index

* Most common indexing method used in IR systems

- Way to avoid linearly scanning the texts
 Index in advace

* Widely used in search engines

* Normally, documents - lists of words
* Inverted index — for each word lists of documents



Creating Inverted index

1. Collect documents to be indexed

2. Tokenize the text

3. Preprocessing

4. Indexing | ictionary |
Seminar 20 —>( 1;2 3:5 51 6,2
Laborator 15 — | 1:5 2:5 5:3 10:1

DISA 33 — | 2,3 4,1 5,1 7,8




Size

* Dictionary:
« Heap’s law:V = 0(nf), 0.4<B<0.6
« TREC - 2: 1GB text, 5MB dictionary
* Postings
- Worst case - one per ocurrence of a word in a text: O(n)

* Inverted index are big - typically 10-100% the size of
collection of documents

» Most of the time compression is needed
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Relevant document set:
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Not simple as that

 Support for different queries:

- Boolean, proximity, phrase, wildcard...
« More complex postings
« Additional indexes
P increase in complexity

 Retrieved document set could be huge
« We need to rank them relevantly



Vector space model



Vector space model

* Idea: A user’'s query can be viewed as a short document

- Documents and queries are represented as vectors in term
space (both in the same space)

» We are able to measure proximity — rank retrieved
documents



Vector space model cont.

« Two documents are similar, if they contain some of the same terms.

- We can take into account / weighting:
« Lenght of documents
* Number of terms in common
« Unusual or common words
« How many times each term appears

- Documents are represented as “bag of words”
- Words are terms with no order
» Thus the document
John is quicker than Mary.
Is indistinguishable from
Mary is quicker than John.



Vector space model cont.

» Jerm vector space
- ndimensional space
« n-number of different terms/tokens used to index a set of documents

* Vector
- Document j, d, represented by a vector. Its magnitude in dimension jis
W where:
w;> 0 if term j occurs in document i
w;=0 otherwise

* wjis the weight of term jin document /



Documents in 3-dimensional
term vector space

information

Assumption: Documents that are “close together” in space are closer
in meaning



Measuring similarity

 Eg. Cosine angle between the docs d, and d, determines
doc similarity

_ dyud,
Cos (0) = d,| [d;]

cos (0) = 1 - documents exactly the same;
cos (0) = 0 - totally different.



Constructing inverted index



Hardware dependencies

 Memory is faster than disc
 Seek time, transfer from disc
» As much data as possible in memory

e Better with SSD

 Disc to memory handled by system bus, not processor
- Reading compressed data and uncompressing
usually faster than
reading uncompressed data



Blocked Sort-

Based Indexing (

« Memory is insufficient, we need to use disc

* Map term to termiD

1. Divide documents collection into blocks
« Each block fits into main memory

2. For each block

« Sort the termID-docID pairs
« Store intermediate sorted result on disc

3. Merge all intermediate results into the final result
- Maintaining small read and write buffers

55

S1)

« Assumption: dictionary fits into main memory, termID available
online for each document



Slocked Sort-Based Indexing (
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Blocked Sort-

* Problems:

Based Indexing (

 Dictionary must fit into memory
- We need dictionary to map a term to termiD

« term-docID postings instead of termID-docID
- But intermediate files would become very large.

« Scalable, but slow.

55
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Single Pass In-Memory Indexing (SPIMI)

* Dictionary won‘t fit into memory

1. Dictionary for each block
2. Add a posting directly to its posting list

* No sorting
« No storage of termID-docID pairs
« Posting list doubles allocated space each time it's full

» Complete inverted index for each block
3. Merge into one big index

« Compression makes SPIMI more efficient
» Postings
« Dictionary terms
» Processing larger blocks



Distributed indexing

 For web-scale indexing
- Distributed computer cluster
* Individual machines are fault-prone

« Maintain a master machine directing the indexing job
* Break up indexing into set of (parallel) tasks
« Master machine assigns tasks



Distributed indexing cont.

 Two sets of tasks
 Parsers
* |[nventers

 Braking the input documents into splits (corresponding to
blocks in BSBI/SPIMI)



Distributed indexing

* Parsers

Master assign split to an idle parser machine

Parser reads a document and emits term-doc pairs

Parser writes pairs into j partitions

Each partition is for a range terms’ first letter

* (e.g. a-f, g-p, q-z) — here j=3

* Inverter
* Collects all term-doc pairs from one term-partition
 Sorts and writes to postings lists



Distributed indexing — data flow
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Dynamic indexing

* Untill now, we assumed that collections are static

* New documents need to be iserted

« Documents are deleted and modified

» Postings upades for terms already in dictionary
» New terms added to dictionary



Dynamic indexing

* “Big"” main index
* New documents go into ,,small” auxiliary index
 Search across both, merge results

 Deletions
e Invalidation bit-vector

* Periodically, re-index into one main index



Dynamic indexing

* Problems:
« Poor performance during merge

- If we have separate files for each postings list, merging is
efficient (simple append)

« Lots of files — not efficient for O/S
* In reality: somewhere in between
- Split large postings lists
* Collect postings list of lenght 1 in one file etc.



We covered

e Structure of inverted index
« Ranking - Vector Space Model
 Constructing of inverted indexes
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