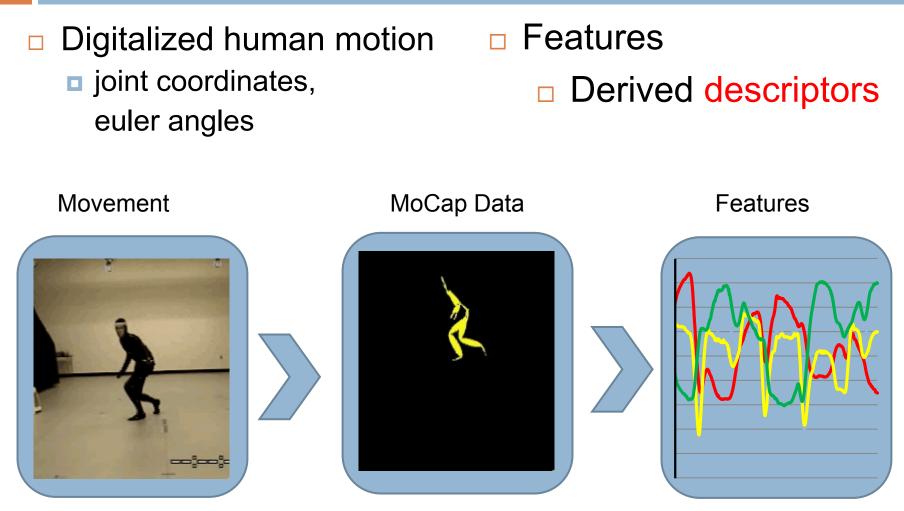
Towards Effective Human Motion Descriptors

Jakub Valcik

Supervisor: Pavel Zezula Consultant: Jan Sedmidubsky

NOV 18, 2013

Outline


Motion Capture Data

- Motivation
- Evaluation Methodology
- Results
- Summary

Motion Capture Data

3

Optical Systems

- Triangulations of the 3D position from image sensors data
- Multiple high-speed video cameras 2~48 (even 300)
- Markers or surface features
- Passive markers
 - Retro-reflective material reflects light generated near the camera lens
 - +Wireless -Marker swapping
- Active markers
 - LED emitting own light
 - Marker identified by modulation of amplitude, pulse width, time window

Optical Systems, cont.

- Passive imperceptible markers
 - Up side down approach
 - Photosensitive markers
 - Depth Map

Markerless

- Analysis of video
 - Identify human forms and brake down into constituent parts for tracking
- Stanford, UMD, MIT, MPI
- MS Kinect, Asus Xtion, PrimeSense Carmine, Organic Motion, Xsens

Non-optical systems

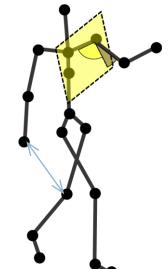
- Inertial systems
 - Miniature inertial sensors
 - Wireless comunication
 - Position error accumulates over time
 - Wii controller
- Mechanical systems
 - Exo-skeleton system tracks angles directly
- Magnetic systems
 - Relative intensity of the voltage or current of coils

Applications

- Health care success of rehabilitative treatments
 Range of joint angle rotation
- Sports performance aspect comparison
 - Variability of same motion pole-jump, figure skating
- Security person identification, event detection
 - Gait recognition, stealing, fighting
 - Home for the elderly
- Computer animation realistic motion synthesis
 Motion retrieval

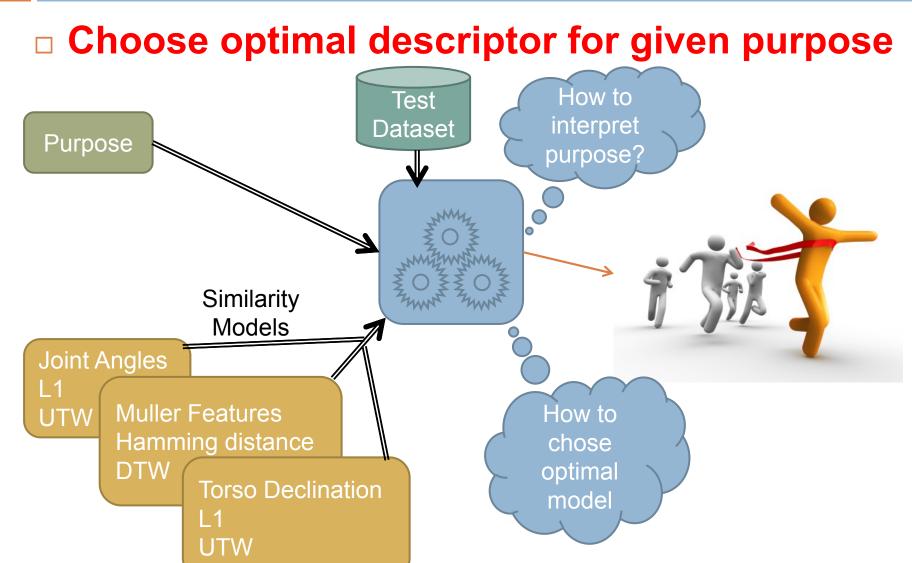
Premise

Ultimate descriptor solving problems of all applications does not exist


Purpose

- Application => Purpose
- Action oriented
 - What?
 - Action, style of action, event detection
 - Logically similar movements
- Subject oriented
 - Who?
 - Subject recognition, age, gender, drunkenness, pregnancy, skeletal disease

Similarity Model


10

- Pose skeleton configuration in one frame
- Pose features extracted from one pose
 - Distances between joints/planes, joint angles, velocities, accelerations, powers, torques, directions
 - Optional quantization
 - relational features, fuzzy features
- Distance between:
 - Poses L_P, Hamming, Mahalonobis
 - Sequences *DTW*, *UTW*, *Uniform* scaling

Evaluation Methodology

Ground Truth as a Purpose

- Purpose represented by ground truth to the given test dataset
 Subject 1: Seq1, Seq4, Subject_2: Seq2,
 - Subject_1: Seq1, Seq4, Subject_ Subject_3: Seq3
 - Bending: Seq1, Jumping: Seq2, Seq4, Throwing: Seq3

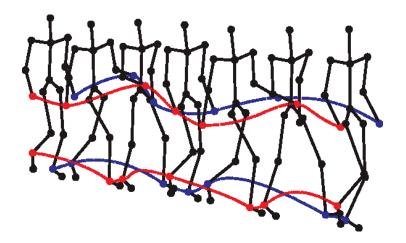
Measures

Retrieval Oriented

- Mean Average Precision (MAP)
- Mean Reciprocal Rank (MRR)
- Discounted Cumulative Gain (DCG)
- K-Nearest Neighbors
- Space Oriented
 - Dunn index
 - Davis-Bouldin index
 - Distance Distribution
- Time consumption

Results

Dataset : HDM, CMU


Summary

- Purpose oriented descriptor evaluation
- Purpose represented as a ground truth
- Provided measures
- Future work
 - Distance distribution
 - Statistical testing

Towards effective human motion descriptors

Q & A

Thank you for your attention

