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Evaluation

� Evaluation is key to building effective and 
efficient search enginesefficient search engines

� usually carried out in controlled experiments� usually carried out in controlled experiments

� online testing can also be done

� Effectiveness and efficiency are related� Effectiveness and efficiency are related

� High efficiency may be obtained at the price of 
effectivenesseffectiveness
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Evaluation Corpus

� Test collections consisting of documents, � Test collections consisting of documents, 

queries, and relevance judgments, e.g., 
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Test Collections
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TREC Topic Example
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Relevance Judgments

� Obtaining relevance judgments is an 
expensive, time-consuming processexpensive, time-consuming process
� who does it?� who does it?

� what are the instructions?

� what is the level of agreement?� what is the level of agreement?

� TREC judgments
� depend on task being evaluated� depend on task being evaluated

� generally binary

reasonable agreement because of “narrative”� reasonable agreement because of “narrative”

6



Pooling

� Exhaustive judgments for all documents in a 
collection is not practicalcollection is not practical

� Pooling technique is used in TRECPooling technique is used in TREC
� top k results (k varied between 50 and 200) from the 
rankings obtained by different search engines are 
merged into a poolmerged into a pool

� duplicates are removed

documents are presented in some random order to the � documents are presented in some random order to the 
relevance judges

Produces a large number of relevance judgments � Produces a large number of relevance judgments 
for each query, although still incomplete
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PoolingPooling
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Bias in Relevance JudgmentsBias in Relevance Judgments

� Relevance judgment is subjective� Relevance judgment is subjective

� Disagreement among assessors
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Combine Multiple JudgmentsCombine Multiple Judgments

� Judges disagree a lot. How to combine � Judges disagree a lot. How to combine 

judgments from multiple reviewers ? 

� Union� Union

� Intersection� Intersection

� Majority vote
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Combine Multiple JudgmentsCombine Multiple Judgments
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� Large impact on absolute performance numbers

Virtually no impact on ranking of systems
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� Virtually no impact on ranking of systems



Query Logs

� Used for tuning and evaluating search engines

� also for techniques such as query suggestion and spell 

checkingchecking

� Typical contents

User identifier or user session identifier� User identifier or user session identifier

� Query terms - stored exactly as user entered� Query terms - stored exactly as user entered

� List of URLs of results, their ranks on the result list, 

and whether they were clicked onand whether they were clicked on

� Timestamp(s) - records the time of user events such 

as query submission, clicks
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Query Logs

� Clicks are not relevance judgments

� although they are correlated

� biased by a number of factors such as rank on � biased by a number of factors such as rank on 

result list

� Can use clickthough data to predict 

preferences between pairs of documentspreferences between pairs of documents

� appropriate for tasks with multiple levels of 

relevance, focused on user relevance

� various “policies” used to generate preferences
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� various “policies” used to generate preferences



Example Click Policy

� Skip Above and Skip Next� Skip Above and Skip Next

� click data

generated preferences� generated preferences
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Query Logs

� Click data can also be aggregated to remove � Click data can also be aggregated to remove 

noise

Click distribution information� Click distribution information

� can be used to identify clicks that have a higher � can be used to identify clicks that have a higher 

frequency than would be expected

� high correlation with relevance� high correlation with relevance

� e.g., using click deviation to filter clicks for � e.g., using click deviation to filter clicks for 

preference-generation policies
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Evaluation Metrics: Classification ViewEvaluation Metrics: Classification View
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Evaluation Metrics: Example

Recall = 2/6 = 0.33Recall = 2/6 = 0.33

Precision = 2/3 = 0.67 Retrieved

RetrievedRelevant 
Precision ====

Precision = 2/3 = 0.67
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RetrievedRelevant 
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Evaluation Metrics: Example

Recall = 5/6 = 0.83Recall = 5/6 = 0.83

Precision = 5/6 = 0.83 Retrieved

RetrievedRelevant 
Precision ====

Precision = 5/6 = 0.83

Relevant

RetrievedRelevant 
Recall ====
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F Measure

� Harmonic mean of recall and precision

� Why harmonic mean?

� harmonic mean emphasizes the importance of 
small values, whereas the arithmetic mean is small values, whereas the arithmetic mean is 
affected more by outliers that are unusually large
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Evaluation Metrics: Example

Recall = 2/6 = 0.33Recall = 2/6 = 0.33

Precision = 2/3 = 0.67Precision = 2/3 = 0.67

F = 2*Recall*Precision/(Recall + Precision) 

= 2*0.33*0.67/(0.33 + 0.67) =  0.22
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Evaluation Metrics: Example

Recall = 5/6 = 0.83Recall = 5/6 = 0.83

Precision = 5/6 = 0.83Precision = 5/6 = 0.83

F = 2*Recall*Precision/(Recall + Precision) 

= 2*0.83*0.83/(0.83 + 0.83) =  0.83
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Evaluation for Ranking

� Average precision� Average precision

� Averaging the precision values from the rank 

positions where a relevant document was positions where a relevant document was 

retrieved

� Set precision values to be zero for the not 

retrieved documentsretrieved documents
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Average Precision: Example
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Average Precision: Example
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Average Precision: Example
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Average Precision: Example

Miss one relevant 

document
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Average Precision: Example

Miss two relevant 

documents

27



Mean Average Precision (MAP)
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Mean Average Precision (MAP)

� Summarize rankings from multiple queries by 
averaging average precisionaveraging average precision

� Most commonly used measure in research � Most commonly used measure in research 
papers

Assumes user is interested in finding many � Assumes user is interested in finding many 
relevant documents for each queryrelevant documents for each query

� Requires many relevance judgments in text 
collectioncollection
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Recall-Precision Graph

Multiple precision Multiple precision 

for some recalls
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Interpolation

� where S is the set of observed (R,P) points� where S is the set of observed (R,P) points

� Defines precision at any recall level as the � Defines precision at any recall level as the 

maximum precision observed in any recall-

precision point at a higher recall levelprecision point at a higher recall level

� produces a step function� produces a step function

� defines precision at recall 0.0
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InterpolationInterpolation
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InterpolationInterpolation
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InterpolationInterpolation
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InterpolationInterpolation
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InterpolationInterpolation
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InterpolationInterpolation
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InterpolationInterpolation
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Interpolation
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Average Precision at Average Precision at 

Standard Recall LevelsStandard Recall Levels

• Only consider standard recall levels: varying from 0.0• Only consider standard recall levels: varying from 0.0

to 1.0 at the incremental of 0.1 

• Recall-precision graph plotted by simply joining the • Recall-precision graph plotted by simply joining the 

average precision points at the standard recall levels
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Average Recall-Precision Graph
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Graph for 50 Queries
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Focusing on Top Documents

� Users tend to look at only the top part of the 

ranked result list to find relevant documents

� Some search tasks have only one relevant � Some search tasks have only one relevant 

documentdocument

� e.g., navigational search, question answering

Recall not appropriate� Recall not appropriate

� instead need to measure how well the search � instead need to measure how well the search 

engine does at retrieving relevant documents at 

very high ranks
43
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Focusing on Top Documents

� Precision at Rank R

� R typically 5, 10, 20

� easy to compute, average, understand� easy to compute, average, understand

� not sensitive to rank positions less than R

Reciprocal Rank� Reciprocal Rank

� reciprocal of the rank at which the first relevant � reciprocal of the rank at which the first relevant 
document is retrieved

� Mean Reciprocal Rank (MRR) is the average of � Mean Reciprocal Rank (MRR) is the average of 
the reciprocal ranks over a set of queries

� very sensitive to rank position
44

� very sensitive to rank position



MRRMRR

RR = 1/1 = 1

RR = 1/2 = 0.5RR = 1/2 = 0.5

MRR = (1+0.5)/2 = 0.75
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Discounted Cumulative Gain (DCG)

� Popular measure for evaluating web search � Popular measure for evaluating web search 

and related tasks

� Use graded relevance� Use graded relevance

� Two assumptions:� Two assumptions:

� Highly relevant documents are more useful than 

marginally relevant documentmarginally relevant document

� the lower the ranked position of a relevant � the lower the ranked position of a relevant 

document, the less useful it is for the user, since it 

is less likely to be examined
46

is less likely to be examined



Discounted Cumulative Gain

� Gain is accumulated starting at the top of the Gain is accumulated starting at the top of the 
ranking and is discounted at lower ranks

� Typical discount is 1/log (rank)� Typical discount is 1/log (rank)

� With base 2, the discount at rank 4 is 1/2, and at 
rank 8 it is 1/3rank 8 it is 1/3
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DCG Example

� 10 ranked documents judged on 0-3 relevance � 10 ranked documents judged on 0-3 relevance 

scale: 

3, 2, 3, 0, 0, 1, 2, 2, 3, 03, 2, 3, 0, 0, 1, 2, 2, 3, 0

� discounted gain: � discounted gain: 

3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0 

= 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0

� DCG:� DCG:

3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
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Efficiency MetricsEfficiency Metrics

� Query throughput

� The number of queries processed per second

� Query latency� Query latency

� The time between issuing a query and receiving a 
response, measured in millisecondresponse, measured in millisecond

� Users consider instantaneous if the latency is less than 
150 millisecond150 millisecond

� Relation between query throughput and latency

� High throughput � handle multiple queries � High throughput � handle multiple queries 
simultaneously � high latency
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Significance Tests

� Given the results from a number of queries, Given the results from a number of queries, 
how can we conclude that ranking algorithm 
A is better than algorithm B?A is better than algorithm B?

� A significance test 

null hypothesis: no difference between A and B� null hypothesis: no difference between A and B

� alternative hypothesis: B is better than A� alternative hypothesis: B is better than A

� the power of a test is the probability that the test 
will reject the null hypothesis correctlywill reject the null hypothesis correctly

� increasing the number of queries in the 
experiment also increases power of test

50
experiment also increases power of test



Example Experimental Results

Significance level: α = 0.05

51Probability for B=A



Example Experimental Results

t-testt-test

t = 2.33 p-value = 0.02t = 2.33 p-value = 0.02

Probability for B=A is 0.02Probability for B=A is 0.02

� B is better than AAvg           41.1     62.5

Significance level: α = 0.05

52Probability for B=A



Online Testing

� Test (or even train) using live traffic on a � Test (or even train) using live traffic on a 

search engine

Benefits:� Benefits:

� real users, less biased, large amounts of test data� real users, less biased, large amounts of test data

� Drawbacks:

� noisy data, can degrade user experience

� Often done on small proportion (1-5%) of live � Often done on small proportion (1-5%) of live 

traffic
53

traffic



Summary

� No single measure is the correct one for any � No single measure is the correct one for any 

application

� choose measures appropriate for task� choose measures appropriate for task

� use a combination� use a combination

� shows different aspects of the system 

effectivenesseffectiveness

� Use significance tests (t-test)� Use significance tests (t-test)

� Analyze performance of individual queries
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