
BigData
An Overview of Several Approaches

David Mera

Masaryk University
Brno, Czech Republic

16/12/2013



Table of Contents

1 Introduction

2 Terminology

3 Approaches focused on batch data processing
MapReduce-Hadoop
HIPI
MapReduce Online
Discretized Streams

4 Approaches focused on stream data processing
Muppet
Storm
S4

5 Conclusions



Table of Contents

1 Introduction

2 Terminology

3 Approaches focused on batch data processing
MapReduce-Hadoop
HIPI
MapReduce Online
Discretized Streams

4 Approaches focused on stream data processing
Muppet
Storm
S4

5 Conclusions



Introduction

There are huge datasets of heterogeneous data available
which are growing fast
Most of world’s data were created in the last 2 years (IBM
source)

2.5 exabytes are created every day
Wallmart collects 2.5 petabytes of data each hour
340 millions of tweets are sent every day



Table of Contents

1 Introduction

2 Terminology

3 Approaches focused on batch data processing
MapReduce-Hadoop
HIPI
MapReduce Online
Discretized Streams

4 Approaches focused on stream data processing
Muppet
Storm
S4

5 Conclusions



Terminology

Batch data
Static snapshot of a data set
Batch computation has a ‘start’ and an ‘end’
Fast datasets processing

Stream data
Stream of events that flows into the system at a given data
rate over which we have no control
Stream computation ‘never’ ends
The processing system must keep up with the event rate or
degrade gracefully
Near-real time answers



Table of Contents

1 Introduction

2 Terminology

3 Approaches focused on batch data processing
MapReduce-Hadoop
HIPI
MapReduce Online
Discretized Streams

4 Approaches focused on stream data processing
Muppet
Storm
S4

5 Conclusions



MapReduce
Overview

MapReduce is a framework for paralleling processing of
massive data sets.
Hadoop implementation is highly optimized for batch
processing
Hadoop attempts to run Map and Reduce tasks at the
machines were the data being processed is located

Task Tracker

DataNode

Node 1

Task Tracker

DataNode

Node 2

Task Tracker

DataNode

Node n

Secondary 

Name Node

HDFS

NameNode

MapReduce 

Framework

Job Tracker

Master Node



MapReduce
Map and Reduce functions

MapReduce Job
Map function (mandatory)

Computation

intermediate<key', value>input<key,value>

Data Source

Reduce function (optional)

Merge function
Output (0..N)intermediate<key',value>



MapReduce
Hadoop benefits

Characteristics that the developer gets without the need to
write any code

Machine communication
Task scheduling
Scalability
Ensuring availability
Handling failures
Automatic partition of the input data



MapReduce
Phases

Data placement
Data are split in storage blocks
First replica is located in the same node as the client
Second replica is placed on a different rack chosen at random
Third replica is placed on the same rack than the second but in
different node
‘Balancer’ daemon

Input Reader
Input data can be retrieved from several datasources (file
system, database, main memory)
Data are split in FileSplits

The unit of data processed by a map task
Storage blocks (by default)



MapReduce
Phases

Map function
Mandatory function
A new map task is created per FileSplit (block)
The user can not manage the number of mappers
Each FileSplit is divided into records and the map processes
each record <key,value> in turn
Map function outputs the result as a new <key,value> pair.



MapReduce
Phases

Combiner function

It does partial merging of data before sending them over the
network
It is executed on each machine that performs a map task
Same code than the reducer function



MapReduce
Phases

Shuffle and Sort phase



MapReduce
Phases

Reduce function
To merge map outputs
The number of reducers can be managed by the user
The Reduce function is invoked once for each distinct
intermediate key
Pairs with the same key will be processed as one group
The input to each reduce task is guaranteed to be processed
in increasing key order

Output writer
It is responsible for writing the output to stable storage
Data storage could be modified



MapReduce
Weaknesses and Limitations

Large files optimization
How to deal with images?
HIPI

Data format management
Optimized for text inputs
HIPI

Selective access to data
Hadoop++ provides indexing functionality

Non intrusive
Indexes are created at data load time and thus have no penalty
at query time
We must know the schema and MapReduce jobs

High communication cost
CoHadoop

Related data are stored in the same node
HDFS is extended with file-level property



MapReduce
Weaknesses and Limitations

Redundant processing
Restore

Workflows of MapReduce jobs
To manage the storage of intermediate results
To reuse intermediate results

Early termination and quick retrieval of approximate results
Reduce functions cannot start before all map functions are
finished
‘MapReduce online’

Lack of iteration
Iterative data analysis cannot be processed efficiently by the
framework
MapReduce sequences are complicated to write.
A performance penalty is paid in every iteration (data reload
and data reprocessing)
‘MapReduce online’



MapReduce
Weaknesses and Limitations

Load Balancing
The runtime of the slowest machine will easily dominate the
total runtime.
Plain partitioning schemes that are not data-aware don’t get
good results
Even when the data is equally split to the available machines,
equal runtime may not always be guaranteed

Real-time processing
MapReduce runs on a static snapshot of a data set
The input data set cannot change.
No reducer’s input is ready to run until all mappers have
finished
A MapReduce computation has a ‘start’ and an ‘end’
‘MapReduce online’



HIPI
A Hadoop Image Processing Interface for Image-based MapReduce Tasks

Specific framework to deal with image processing and
computer vision applications
HIPI goals

Providing an open, extendible library for image processing
Storing images efficiently
Filtering images
Hiding Map-Reduce details
Optimizing applications to be executed in MapReduce



HIPI
Arquitecture

HIPI Image Bundle Data Type stores many images in one
large file
HIPI has a filter based on image properties
HIPI processes individually each image
Images are stored as standard data types. The HIPI library
encodes and decodes images



MapReduce Online
Introduction

Main goals
Online aggregation (Incremental outputs)
Continuous queries (streaming processing)

Large modification of Hadoop
Data are pipelined between operators

Reducers begin processing data as soon as they are produced
by mappers
Increasing opportunities for parallelism
Resource utilization improvement
Response time reduction



MapReduce Online
Main modifications

Map tasks were modified to push data to reducers
Map buffer

Fixed threshold
Combiners are applied over buffer data
Buffer data are sorted
Data are written into the disk
Files are registered in the TaskTracker
TaskTracker sends files ASAP to the reducer



MapReduce Online
Main Characteristics

Online aggregation
Reduce function is applied over the pipelined map outputs
Snapshots are stored in HDFS
Snapshots can be used as inputs for the next task

Iteration
Reducers can pipeline their output to the next map operator

To avoid HDFS storage

JobTracker was modified to accept a list of jobs



MapReduce Online
Main Characteristics

Continuous queries
Mappers and reducers are fixed
Reducers are configured to be executed periodically
Map outputs are maintained in a buffer with unique id
Reducer informs to the jobTraker when its task is finished
Jobtracker informs mappers that data are no longer necessary



Discretized Streams
An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

Main goal
To treat a streaming computation as a series of deterministic
batch computations on small time intervals

Data are received and stored in intervals
Model advantages

It is easy to unify with batch systems
Users only need to write one version of their analytic task
Fault tolerant. Similar recovery mechanisms to batch systems
Consistency is well-defined since each record is processed
atomically with the interval in which it arrives



Table of Contents

1 Introduction

2 Terminology

3 Approaches focused on batch data processing
MapReduce-Hadoop
HIPI
MapReduce Online
Discretized Streams

4 Approaches focused on stream data processing
Muppet
Storm
S4

5 Conclusions



Muppet
MapReduce-Style Processing of Fast Data

Framework specifically developed for fast data
Components

Event<stream_id, timestamp, key, value>
Stream is a sequence of events with the same ‘stream_id’ and
increasing order of timestamp
Map function: map(event)=event*

Memoryless

Update function: update (event,slate)=event*
Slate

A slated is determined by the tuple <update U,key k>
SLATEuk is an in-memory data structure which summarizes all
events with key ‘K’ that an update function ‘U’ has seen so far
Time-to-live parameter



Muppet: MapReduce-Style Processing of Fast Data
Distributed execution

The work flow is modeled as a direct graph
Muppet starts up a set of workers on each machine

A hash function is used to distribute events
A special mapper is used to read from the input stream

Slates
All events with the same key will go to the same update
Key-value storage - Cassandra

Slates may outgrow the memory
Persistent slates help recovering the application from crashes
Slates could be queried long after the termination of the
application



Muppet: MapReduce-Style Processing of Fast Data
handling failures

A worker ‘A’ determines the worker ‘B’ to which to send an
event by hashing the key and destination updater function of
the event
If ‘A’ cannot contact ‘B’, then it assumes the machine has
failed, and ‘A’ contacts the master to report
The master broadcasts the machine failure to all workers
Hash function is updated
If updater fails then temporary slate data are lost.



ZooKeeper
Wait-free coordination for Internet-scale systems

Centralized service to coordinate distributed processes
Shared hierarchical name space of data registers (znodes)
Data are kept in-memory
Znodes are limited to the amount of data that they can have
The service is replicated over a set of machines

/

/cluster_1 /cluster_2

/cluster_1/node01 /cluster_1/node02 /cluster_1/node03
ip: 192.168.x.x

port:8045



Storm
Distributed and fault-tolerant realtime computation

Storm cluster
Master node

The Nimbus daemon is responsible for distributing code around
the cluster, assigning tasks to machines, and monitoring for
failures

Worker nodes
The Supervisor daemon listens for work assigned to its machine
and starts and stops worker processes as necessary based on
what Nimbus has assigned to it.

Communication - Zookeeper

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor



Storm
Components

Storm runs topologies
Graph of computation
Each node in a topology contains processing logic

Stream
Unbounded sequence of tuples

Spout
It reads input data from an external source and emits them as
a stream
It is capable of replaying a tuple

Bolt
Input streams –> some processing –> new streams.

Spout

Bolt

Bolt

Bolt

Bolt

Spout



Storm
Parallelism of a Storm topology

Topologies execute across worker processes (JVM)
Tasks are spread evenly across all the workers
The parallelism for each node is defined by the user
User can also specify tasks for each node
Stream grouping - How a stream should be partitioned

i.e.Shuffle grouping
Scalability in processing time

TOPOLOGY

Worker Process

Task

Task

Task

Task

Task

Task

Worker Process

Task

Task

Task

Task

Task

Task

Pink

Spout
Blue

Bolt
Green

Bolt



Storm
Fault tolerant

If a worker process dies then the supervisor will restart it
If a node dies then Nimbus will reassign those tasks to other
machine
If a daemon dies (Nimbus or Supervisor) then they restart

State of Nimbus and workers is saved on Zookeeper
Storm guarantees that each message will be fully processed.

A tuple is considered "fully processed" when the tuple tree has
been completely processed.
User must specify links in the tree of tuples
User must specify when an individual tuple is done



S4
Distributed Computing Platform

S4 goals
Simple programming interface for processing data streams
Language neutrality
Commodity HW
High availability and Scalability
Decentralized architecture
To avoid disk access

S4 assumptions
Lossy failover is acceptable
Nodes cannot be added or removed from a running process



S4
Arquitecture

Stream: sequence of events <Key,Value>
Processing Elements (PEs) are the basic computational units
Processing Nodes are the logical hosts to PEs
S4 routes each event to PNs based on a hash function
Communication layer: Zookeeper

Processing Node

Processing Element Container

PE1 ... PEn

Listener Dispatcher Emiter

Communication Layer

Zookeeper

PE2



S4
Example

Example: “I meant what I said and I said what I meant.”

External Client

(data source)

External Client

(data source)

External Client

(data source)
...

Adapter

S4 

Streams of Events

...

...

Ev. Type

Key

Val

Ev. Type

Key

Val

Ev. Type

Key

Val

Ev. Type

Key

Val

quote

Null

quote="I ..."

WordEvent

word="said"

count=2

Ev. Type

Key

Val

WordEvent

word="I"

count=4

UpdCountEv

sortID=2

Word=said

count=9

Ev. Type

Key

Val

UpdCountEv

sortID=2

Word=I

count=20

PartialTopKEv

topk=1234

words=[w:cont]

PE

PE PE PE

PE PE PE

PE



S4
Weakness

The processing of an event is not guaranteed
The network is used heavily
User must consider carefully how to split the data (keys) in
terms of performance



Table of Contents

1 Introduction

2 Terminology

3 Approaches focused on batch data processing
MapReduce-Hadoop
HIPI
MapReduce Online
Discretized Streams

4 Approaches focused on stream data processing
Muppet
Storm
S4

5 Conclusions



Conclusions

Typically, systems are developed to solve an specific problem
Lack of heterogeneous systems

“Attempting to build a general-purpose platform for both batch and
stream computing would result in a highly complex system that
may end up not being optimal for either task”


	Introduction
	Terminology
	Approaches focused on batch data processing
	MapReduce-Hadoop
	HIPI
	MapReduce Online
	Discretized Streams

	Approaches focused on stream data processing
	Muppet
	Storm
	S4

	Conclusions

