BigData

An Overview of Several Approaches

David Mera

Masaryk University
Brno, Czech Republic

16/12/2013

Table of Contents

Introduction
Terminology

Approaches focused on batch data processing
m MapReduce-Hadoop
m HIPI
m MapReduce Online
m Discretized Streams

Approaches focused on stream data processing
m Muppet
m Storm
m S4

Conclusions

Table of Contents

Introduction

Introduction

m There are huge datasets of heterogeneous data available
which are growing fast

m Most of world’s data were created in the last 2 years (IBM
source)

m 2.5 exabytes are created every day
m Wallmart collects 2.5 petabytes of data each hour
m 340 millions of tweets are sent every day

Data Volume

Data Available to

1 an Organization

The Gap due to lack
of Data Processing and
Analysis Technology

Amount of Data an
Organization can
Process

-

Time

Table of Contents

Terminology

Terminology

Batch data

m Static snapshot of a data set
m Batch computation has a ‘start’ and an ‘end’
m Fast datasets processing

Stream data

m Stream of events that flows into the system at a given data
rate over which we have no control

m Stream computation ‘never’ ends

m The processing system must keep up with the event rate or
degrade gracefully

m Near-real time answers

Table of Contents

Approaches focused on batch data processing
m MapReduce-Hadoop
m HIPI
m MapReduce Online
m Discretized Streams

MapReduce
Overview

m MapReduce is a framework for paralleling processing of
massive data sets.

m Hadoop implementation is highly optimized for batch
processing

m Hadoop attempts to run Map and Reduce tasks at the
machines were the data being processed is located

Master Node

! [MapReduce
i [Framework

' Job Tracker e
! [ADFS P Secondary | |

: ‘ Task Tracker ‘

L ‘ Task Tracker ‘ : Task Tracker
8‘ DataNode ‘ 8‘ DataNode ‘ 8 DataNode

MapReduce
Map and Reduce functions

m MapReduce Job
m Map function (mandatory)

input<key,value> intermediate<key', value>

Computation

Data Source

m Reduce function (optional)

intermediate<key',value> Output (0..N)
——»| Merge function >

MapReduce
Hadoop benefits

m Characteristics that the developer gets without the need to
write any code

Machine communication

Task scheduling

Scalability

Ensuring availability

Handling failures

Automatic partition of the input data

MapReduce
Phases

m Data placement
m Data are split in storage blocks
m First replica is located in the same node as the client
m Second replica is placed on a different rack chosen at random
m Third replica is placed on the same rack than the second but in
different node
m ‘Balancer’ daemon

m Input Reader
m Input data can be retrieved from several datasources (file

system, database, main memory)
m Data are split in FileSplits

B The unit of data processed by a map task
m Storage blocks (by default)

MapReduce
Phases

m Map function

Mandatory function

m A new map task is created per FileSplit (block)

m The user can not manage the number of mappers

m Each FileSplit is divided into records and the map processes
each record <key,value> in turn

Map function outputs the result as a new <key,value> pair.

MapReduce
Phases

m Combiner function

m It does partial merging of data before sending them over the
network

m It is executed on each machine that performs a map task

m Same code than the reducer function

MapReduce
Phases

m Shuffle and Sort phase

Copy “Sort” Reduce
phase phase phase
map task partition reduce task

sort, an
spill to disk

w mer e
'”ﬂ“t on disk

partitions

output

Other maps g ». Otherreduces

MapReduce
Phases

m Reduce function

m To merge map outputs

m The number of reducers can be managed by the user

m The Reduce function is invoked once for each distinct
intermediate key

m Pairs with the same key will be processed as one group

m The input to each reduce task is guaranteed to be processed
in increasing key order

m Output writer

m It is responsible for writing the output to stable storage
m Data storage could be modified

MapReduce
Weaknesses and Limitations

m Large files optimization
m How to deal with images?
m HIPI
m Data format management
m Optimized for text inputs
m HIPI
m Selective access to data
m Hadoop++ provides indexing functionality
® Non intrusive
B Indexes are created at data load time and thus have no penalty
at query time
B We must know the schema and MapReduce jobs
m High communication cost
m CoHadoop
B Related data are stored in the same node
m HDFS is extended with file-level property

MapReduce
Weaknesses and Limitations

m Redundant processing
m Restore
m Workflows of MapReduce jobs
B To manage the storage of intermediate results
H To reuse intermediate results

m Early termination and quick retrieval of approximate results

m Reduce functions cannot start before all map functions are
finished

m ‘MapReduce online’

m Lack of iteration

m lterative data analysis cannot be processed efficiently by the
framework

m MapReduce sequences are complicated to write.

m A performance penalty is paid in every iteration (data reload
and data reprocessing)

m ‘MapReduce online’

MapReduce
Weaknesses and Limitations

m Load Balancing

m The runtime of the slowest machine will easily dominate the
total runtime.

m Plain partitioning schemes that are not data-aware don’t get
good results

m Even when the data is equally split to the available machines,
equal runtime may not always be guaranteed

m Real-time processing

m MapReduce runs on a static snapshot of a data set

m The input data set cannot change.

m No reducer’s input is ready to run until all mappers have
finished

m A MapReduce computation has a ‘start’ and an ‘end’

m ‘MapReduce online’

HIPI
A Hadoop Image Processing Interface for Image-based MapReduce Tasks

m Specific framework to deal with image processing and
computer vision applications

m HIPI goals

Providing an open, extendible library for image processing

m Storing images efficiently
m Filtering images
(]
(]

Hiding Map-Reduce details
Optimizing applications to be executed in MapReduce

HIPI
Arquitecture

m HIPI Image Bundle Data Type stores many images in one
large file

m HIPI has a filter based on image properties
m HIPI processes individually each image

m Images are stored as standard data types. The HIPI library
encodes and decodes images

—

Images
1K = Map 1

—)
™

/

Hipi Image
Bundle 2 = Shufile

N— yd

images
n-k..n | [~

Result

\

Reduce j

Map i

MapReduce Online
Introduction

m Main goals

m Online aggregation (Incremental outputs)
m Continuous queries (streaming processing)

m Large modification of Hadoop
m Data are pipelined between operators

m Reducers begin processing data as soon as they are produced
by mappers

m Increasing opportunities for parallelism

m Resource utilization improvement

m Response time reduction

MapReduce Online
Main modifications

m Map tasks were modified to push data to reducers
m Map buffer

Fixed threshold

Combiners are applied over buffer data

[]
m Buffer data are sorted

m Data are written into the disk
[]

[]

Files are registered in the TaskTracker
TaskTracker sends files ASAP to the reducer

MapReduce Online
Main Characteristics

m Online aggregation
m Reduce function is applied over the pipelined map outputs
m Snapshots are stored in HDFS
m Snapshots can be used as inputs for the next task
m lteration
m Reducers can pipeline their output to the next map operator
m To avoid HDFS storage
m JobTracker was modified to accept a list of jobs

MapReduce Online
Main Characteristics

m Continuous queries

Mappers and reducers are fixed

Reducers are configured to be executed periodically

Map outputs are maintained in a buffer with unique id

Reducer informs to the jobTraker when its task is finished
Jobtracker informs mappers that data are no longer necessary

Discretized Streams

An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

m Main goal
m To treat a streaming computation as a series of deterministic
batch computations on small time intervals

m Data are received and stored in intervals

m Model advantages
m It is easy to unify with batch systems
m Users only need to write one version of their analytic task
m Fault tolerant. Similar recovery mechanisms to batch systems
m Consistency is well-defined since each record is processed
atomically with the interval in which it arrives

Table of Contents

Approaches focused on stream data processing
m Muppet
m Storm
m S4

Muppet
MapReduce-Style Processing of Fast Data

m Framework specifically developed for fast data
m Components

Event<stream_id, timestamp, key, value>

Stream is a sequence of events with the same ‘stream_id’ and
increasing order of timestamp

Map function: map(event)=event*

Memoryless

Update function: update (event,slate)=event*
Slate

A slated is determined by the tuple <update U,key k>
SLATE, is an in-memory data structure which summarizes all
events with key ‘K’ that an update function ‘U’ has seen so far
Time-to-live parameter

Muppet: MapReduce-Style Processing of Fast Data

Distributed execution

m The work flow is modeled as a direct graph
m Muppet starts up a set of workers on each machine

m A hash function is used to distribute events

m A special mapper is used to read from the input stream
m Slates

m All events with the same key will go to the same update
m Key-value storage - Cassandra
m Slates may outgrow the memory
B Persistent slates help recovering the application from crashes
m Slates could be queried long after the termination of the
application

Input stream

key value store

Muppet: MapReduce-Style Processing of Fast Data

handling failures

m A worker ‘A’ determines the worker ‘B’ to which to send an
event by hashing the key and destination updater function of
the event

m If ‘A’ cannot contact ‘B’, then it assumes the machine has
failed, and ‘A’ contacts the master to report

m The master broadcasts the machine failure to all workers
m Hash function is updated
m [f updater fails then temporary slate data are lost.

ZooKeeper

Wait-free coordination for Internet-scale systems

m Centralized service to coordinate distributed processes

m Shared hierarchical name space of data registers (znodes)
m Data are kept in-memory

m Znodes are limited to the amount of data that they can have
m The service is replicated over a set of machines

/

/cluster_1 /cluster_2

|
O O

/cluster_1/node01 /cluster_1/node02 /cluster_1/node03
ip: 192.168.x.x
port:8045

Storm
Distributed and fault-tolerant realtime computation

m Storm cluster
m Master node
B The Nimbus daemon is responsible for distributing code around
the cluster, assigning tasks to machines, and monitoring for
failures
m Worker nodes
B The Supervisor daemon listens for work assigned to its machine
and starts and stops worker processes as necessary based on
what Nimbus has assigned to it.

m Communication - Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Storm
Components

m Storm runs topologies
m Graph of computation
m Each node in a topology contains processing logic
m Stream
m Unbounded sequence of tuples
m Spout
m It reads input data from an external source and emits them as
a stream
m It is capable of replaying a tuple
m Bolt
m Input streams —> some processing —> new streams.

Spout

Storm
Parallelism of a Storm topology

m Topologies execute across worker processes (JVM)
m Tasks are spread evenly across all the workers
m The parallelism for each node is defined by the user

m User can also specify tasks for each node
m Stream grouping - How a stream should be partitioned
m i.e.Shuffle grouping

m Scalability in processing time

Blue Gree
Bolt Bol

TOPOLOGY

Worker Process Worker Process

= B |FE O

E B |[E] =

Storm
Fault tolerant

m If a worker process dies then the supervisor will restart it
m |f a node dies then Nimbus will reassign those tasks to other
machine
m If a daemon dies (Nimbus or Supervisor) then they restart
m State of Nimbus and workers is saved on Zookeeper
m Storm guarantees that each message will be fully processed.

m A tuple is considered "fully processed" when the tuple tree has
been completely processed.

m User must specify links in the tree of tuples

m User must specify when an individual tuple is done

S4
Distributed Computing Platform

m S4 goals

Simple programming interface for processing data streams
Language neutrality

Commodity HW

High availability and Scalability

Decentralized architecture

To avoid disk access

m S4 assumptions

m Lossy failover is acceptable
m Nodes cannot be added or removed from a running process

S4
Arquitecture

m Stream: sequence of events <Key,Value>

m Processing Elements (PEs) are the basic computational units
m Processing Nodes are the logical hosts to PEs

m S4 routes each event to PNs based on a hash function

m Communication layer: Zookeeper

Processing Node

Processing Element Container

PE;| |PE,| aaa |PE,

——-| Listener | |DispatcherH» Emiter

Communication Layer
Zookeeper

S4

Example

m Example: “

meant what | said and | said what | meant.”

External Client External Client External Client
(data source) (data source) (data source)

l l l l

Adapter

l iil Streams of Events

Ev. Type | quote } |

Key Null |
uote="1 ..."
vl - T | @ Ev. Type | wordEvent
Ev. Type | wordEvent / \ Key word="1"
Key word="said"| Val e
Val count=2 @ @ 7—|7
I
Ev. Type | UpdCountEv Ev. Type [UpdCountEv]
Key sortiD=2 Key sortib=2_|
= Word=1
Val xor::;ld Val o]

EV. Type | PartialTopKEv |
.@ Key topk=1234 ‘

Val__|words=lw:cont]

S4
WEELGESS

m The processing of an event is not guaranteed
m The network is used heavily

m User must consider carefully how to split the data (keys) in
terms of performance

Table of Contents

Conclusions

Conclusions

m Typically, systems are developed to solve an specific problem
m Lack of heterogeneous systems
“Attempting to build a general-purpose platform for both batch and

stream computing would result in a highly complex system that
may end up not being optimal for either task”

	Introduction
	Terminology
	Approaches focused on batch data processing
	MapReduce-Hadoop
	HIPI
	MapReduce Online
	Discretized Streams

	Approaches focused on stream data processing
	Muppet
	Storm
	S4

	Conclusions

