Image Retrieval through Codebooks

Marián Labuda

25.11.2013

Marián Labuda

- Principles
- System Architecture
- Visual Vocabularies
- Experimental results
- Conclusion

Marián Labuda

• Principles

- local feature extraction from a set of images
- conversion of features to visual words (quantization)
- using text retrieval technology

25.11.2013

Marián Labuda

- Basic operations
 1) Indexing
 - Feature extraction list of local image features
 - features as descriptors (high dimensional vectors)
 - Quantization images as text documents
 - quantization through visual vocabulary
 - simple text string instead of high dimensional vector
 - Storage visual words in inverted index

2) Querying

- Feature extraction a list of local image features for a given image
- Quantization the query image as a list of keywords
- Searching in an inverted index using text retrieval engine
 - answer ranking according to similarity
- Post-processing e.g. spatial verification

Marián Labuda

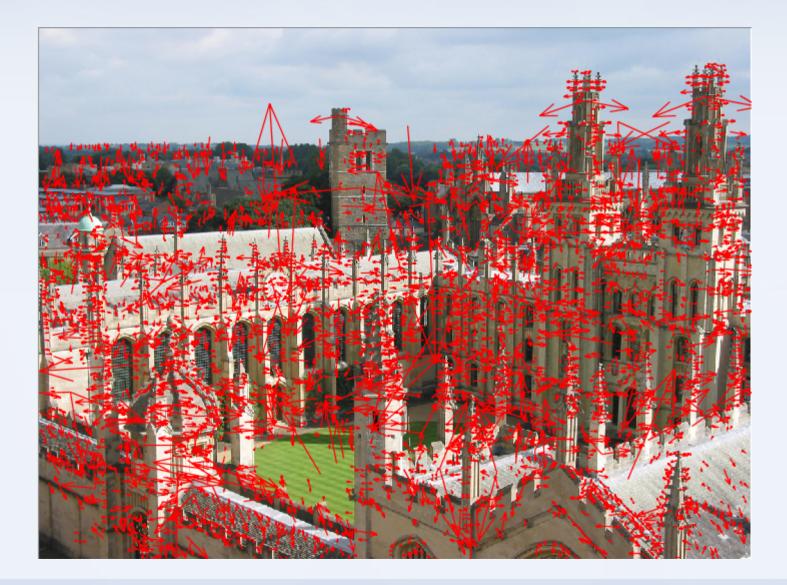
Feature extraction

- image content described by image features

- image features global features (e.g. color histogram)- local features (e.g. SIFT, SURF, MSER, ...)
- pros. & cons. of local image features
- extraction of features creates descriptors
- computation complexity of high dimensional descriptors

Marián Labuda

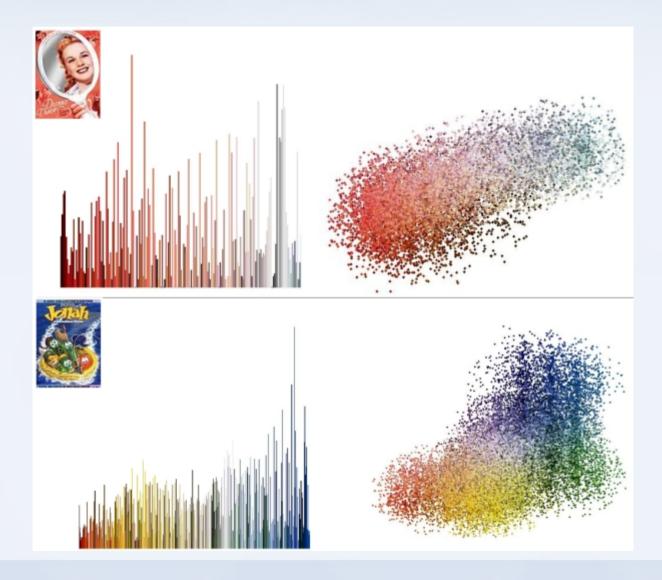
SIFTs



25.11.2013

Marián Labuda

Color Histogram



25.11.2013

Marián Labuda

- System Architecture
- **MESSIF framework** data abstraction - feature extraction
 - Web UI
- Lucene Core indexing and searching
- My implementation visual vocabulary
 - similarity modification
 - post-processing

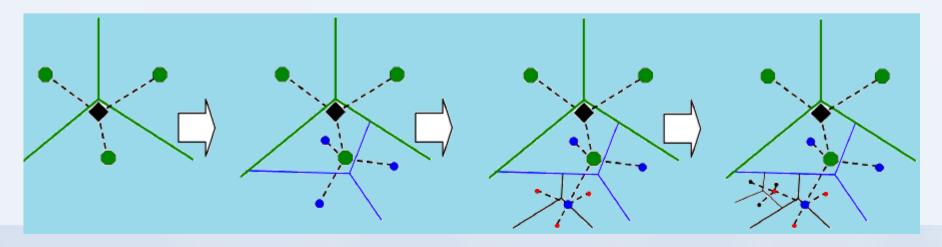
Marián Labuda

- Lucene Core
 - full-text search engine
- usage of inverted files
- high performance
- supports various types of queries
- ranked searching
- using Lucene is provided through class *LuceneAlgorithm* combines Lucene Core library and MESSIF framework

Marián Labuda

Visual Vocabulary

- provide quantization of local image descriptors
- visual vocabulary as a bottleneck of Image Retrieval System
- images as sets of quantized features
- some words can occur too often, others very few
 - later we can filter them as stop words (analogy to prepositions, ...)



Marián Labuda

- My implementation Visual vocabulary
- abstract class AbstractVisualVocabulary
- simple implementation and integration of a new visual vocabulary
- implemented visual vocabularies:
 - K-means
 - *MDPV* (*metric distance permutation vocabulary*)
- efficiency of the given visual vocabulary

Marián Labuda

Visual vocabularies - hierarchical k-means

- hierarchical k-means provides a faster way to quantize descriptors than flat
- a visual word as a path from the root to a leaf node

Demo application

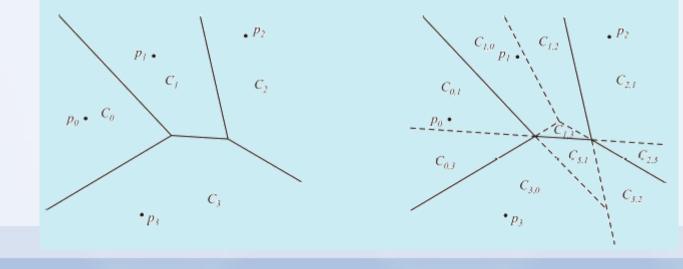
- deployed at http://mufin.fi.muni.cz/subimages-lucene/random
- oxford building dataset (~5000 images)
- 6 hierarchical k-means
- 10 descriptors in node

Marián Labuda

•Visual vocabularies - MDPV

- idea of metric distance permutation vocabulary – based on a small number of pivots and recursivelly defines voronoi cells

- provides finer granularity than k-means
- faster and requires less space than k-means
- visual words as a sequence of more pivots (5 or 10 are used at most)



359322@mail.muni.cz

25.11.2013

Marián Labuda

- My implementation Similarity modification
 - text based retrieval systems often use tf-idf scoring
 tf term frequency "How many times does the term occur in the document (in one image)?"
 idf inverse document frequency "How many documents
 - (images) contain the given term in whole collection?"
 - Lucene provides an easy way to implement own similarity
 - definition of similarity by scoring
 - score computation:

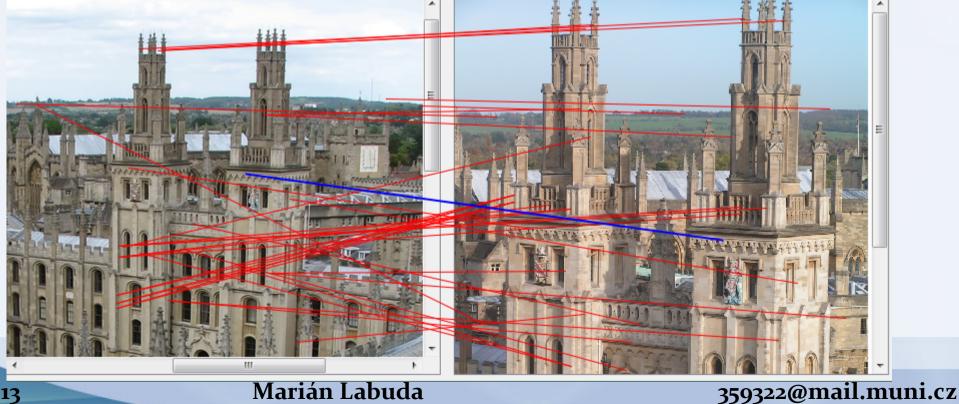
 $score(q, d) = coord(q, d) * \Sigma(tf(t \in d) * idf(t) * t.getBoost())$

- experimentally determined the best similarity on the ukbench dataset

Marián Labuda

- My implementation Post-processing
- RANSAC RANdom SAmple Consensus
- geometric verification

- not enough improvement on the given vocabularies – fine-grained words



25.11.2013

• Experimental results

- Ukbench dataset contains 5 (almost) different datasets

- CD CD covers
- moving moving vehicles
- CD+moving combination of CD and moving datasets
- flip some flipped versions of normal dataset
- normal test set

 locators of similar images example: sift100000
 sift100001
 sift100002
 sift100003

25.11.2013

Marián Labuda

- Experimental results (continue)
 - similarity tests based on the matrix of different settings:
 - term frequency weights
 - inverse document frequency weights
 - overlap weights
- compared to ukbench results visual words provided by authors
- comparison based on relationship to flat ukbench results
 - slightly better results in effectiveness better retrieval
 - slightly worse results in speed

- "best" similarity: tf = 1 $idf = (\ln \frac{N}{N_i})^2$ $coord = (\frac{overlap}{maxOverlap})^3$ N - total count of documents overlap - terms of query in document N_i - documents count containing term maxOverlap - count of query terms

Marián Labuda

• Experimental results (continue 2)

- how many of the ground-truth images occured in top 4:

Dataset	My Similarity	Customized	Ukbench
CD	2,9583	2,9344	2,8956
movie	2,8912	2,8762	2,8285
CD & movie	2,9528	2,9326	2,8844
flip	2,9609	2,9548	3,0144
test	3,1414	3,1498	3,1664
Average value	2,9809	2,9696	2,9579

- each dataset consists of 10200 images
- every image has 3 other ground-truth images
- Customized similarity is same as My Similarity except the tf
- customized similarity count with term frequency as \sqrt{f} instead of 1

Marián Labuda

- Experimental results (continue 3)
- unfortunately I was not able to reproduce their results with any similarity
- stop words did not provide more precise results
- term frequency can be fully omited
- index time is up to 2 minutes

- searching of 10200 queries on database consisting of 10200 documents takes from 6 to 10 minutes (39 – 60 ms per image)

- experiments on Lenovo T430s – 8 GB RAM

- Intel Core i7 3520M (2,9 GHz, 2 cores)

Marián Labuda

Conclusion

- image retrieval system based on visual vocabularies and inverted files are as strong as the vocabulary

- term frequency can be fully omited

- usage of stop words depends on vocabulary
- inverted index provides fast and scalable solution

Marián Labuda