|[AO14: Advanced Functional
Programming

Course information
1. History of A-calculus

Jan Obdrzalek obdrzalek@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

IA014 1. History

mailto:obdrzalek@fi.muni.cz

Course information

1A014 1. History

Course organization

Lectures
e Thursday, 12 noon, D2
¢ language: English
« slides will be available (IS)

Exam
e midterm exam (worth 15 % of the points)
final exam (85 %)
both written
in English, but you may answer in Czech

k and z completion possible

1A014 1. History

Prerequisites

no formal requirements
some experience with functional programming
e evaluation, recursion, abstract data types, pattern matching,
lists (including comprehensions), higher-order functions, ...
e e.g. to the extent covered by
IBO15 — Non-imperative programming
 you should be able to write simple functional programs
 you will have first few weeks to catch-up on FP, if you are
willing to work
» we will use mostly Haskell
e but if you know ML (OCaml, F#, ...) you should be fine
(see the recommended literature)

1A014 1. History 4

1A014

Topics covered

history of A-calculus (and functional programming)
A-calculus

e untyped A-calculus

o simply typed A-calculus

» polymorphic A-calculus (system F)

type inference (Hindley-Milner alg.)
type system extensions

type classes

functors, monads

monad transformers

purely functional data structures

concurrency

applications
e DSL - Domain specific languages
e Quickcheck - type based property testing
e dependent types: Agda and Coq

1. History

Reading

e There is no book covering the whole course.
e Some topics cannot be found in any book at all.

o | will use various research papers (available in IS)
https://is.muni.cz/auth/el/1433/podzim2014/IA014/index.qwarp

some (more or less) general books
e B. O'Sullivan, J. Goerzen and D. Stewart: Real World Haskell
e M. Lipovaca: Learn You a Haskell for Great Good!

e G. Michaelson: An Introduction to Functional Programming
Through Lambda Calculus

e C. Okasaki: Purely Functional Data Sructures
e B. Pierce: Types and Programming Languages

1A014 1. History

https://is.muni.cz/auth/el/1433/podzim2014/IA014/index.qwarp

Real World Haskell

Code You Can Believe In

Real World

Bryan O'Sullivan,
OREILLY® John Geerzen & Don Stewert

http://book.realworldhaskell.org/

1A014 1. History

http://book.realworldhaskell.org/

Learn You a Haskell

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaéa @

http://learnyouahaskell.com/

1A014 1. History

http://learnyouahaskell.com/

(Short) History of A-calculus
(and functional programming)

Based on a talk “Church’s Coincidences” by Phil Wadler.

1A014 1. History

David Hilbert (1862-1943)

1A014 1. History

Entscheidungsproblem

Does there exists an algorithm with the following properties:
INPUT: formula ¢ of First Order logic

(+ finite number of extra axioms, e.g. Peano arithmetic)
OuTPUT: YES iff ¢ is true (universally valid)

¢ Many problems could then be automatically solved:

e Goldbach Conjecture
e Riemann Hypothesis
¢ Diophantine Equations (Hilbert’s 10th problem)

o “Little detail”: what is meant by algorithm?
« We need a notion of effective computability

1A014 1. History

1A014

David Hilbert (1862-1943)

WIRMUSSEN WISSEN
WIR WERDEN WISSEN,

1. History

David Hilbert (1862-1943)

WIR _'\,IEll.Hi N WISSEN
WIR WERDEN WISSEN

IA0O14 1. History

David Hilbert (1862-1943)

For the mathematician there is no Ignorabimus, and, in my
opinion, not at all for natural science either. ... The true reason
why [no one] has succeeded in finding an unsolvable problem is,
in my opinion, that there is no unsolvable problem. In contrast to
the foolish Ignorabimus, our credo avers: We must know, We
shall know.

D. Hilbert

Kdnigsberg, 8 September 1930
Society of German Scientists and Physicians

1A014 1. History 12

Kurt Gddel (1906-1978)

13

1A014 1. History

Godel’s Incompleteness
Theorem

Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I".
Von Kurt Godel in Wien.

On Formally Undecidable Propositions of Principia Mathematica
and Related Systems | (1931)

For any consistent, effectively generated formal theory that
proves certain basic arithmetic truths, there is an arithmetical
statement that is true, but not provable in the theory.

Kénigsberg, 7 September 1930
Conference on Epistemology
Rheld jointlywith the meetings of Society of German Scientists and Physiciang,

Alonzo Church (1903-1995)

A. Church — A-calculus (1932)

A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC.!

By AroNzo CHURCH.’

appfication must be held irrelevant. There may, indeed, be other :ippli-
cations of the system than its use as a logic.

An occurrence of a variable x in a given formula is called an occurrence
of x as a bound variable in the given formula if it is an occurrence of X
in a part of the formula of the form Ax [M]; that is, if there is a formula M
such that Ax[M] occurs in the given formula and the occurrence of X in
question is an occurrence in Ax [M]. All other occurrences of a variable
in a formula are called occurrences as a free variable.

A formula is said to be well-formed if it is a variable, or if it is one
of the symbols /7, =, &, ~, ¢, 4, or if it is obtainable from these symbols
by repeated combinations of them of one of the forms {M} (N) and Ax [M],
where X is any variable and M and N are symbols or formulas which are
being combined. This is a definition by induction. It implies the following
rules: (1) a variable is well-formed (2) X, 2, &, ~, ¢, and A are well-formed
(3) if M and N are well-formed then {M}(N) is well-formed (4) if x is
a variable and M is well-formed then Ax[M] is well-formed.

1A014 1. History

A-calculus (1932)

« formal system of mathematical logic

« based on function abstraction and application using
variable binding and substitution

« intended to be a foundation of mathematics

f(x) = 2% +x +42
4
f=dza?+x+42

Notation
Then Now
X X variable

Ax[N] (Ax.N) abstraction
{L}(M) (L. M) application

1A014 1. History

A-definability

By 1932, the following could be modelled by X-calculus:

e natural numbers
+1 (successor)
addition, multiplication

exponentiation

... pretty much everything!

Problem!
« How to define the predecessor (-1) operation?

o |f that would not be definable, then \-calculus does not
capture the notion of effective computability!

e Solution: S. Kleene, 1932

1A014 1. History 18

Stephen Kleene (1909-1994)

S. Kleene — predecessor (1932)

In 1932, soon after returning to Church's
identification, one day late in January or early in
February while in a dentists office, it came to me
that I could A-define the predecessor function by
using the A-definability of (2) by An.n(G,A) in the
following way. The ordered number-triples
(21,32,3) can be represented by the A-formulas

AEghx. (... f(g(er.gh(euh(x)...))...))...) with
B f's, 8, g's and L h's after the prefix Afghx.

And a A-formula G is easily constructed to perform
the following operation on any n-tuple:
(n ,n ,n)

(n ,n,S(n)).
2°73 3

So if A is (1,1,1), then An.n(G,A) A-defines the
sequence of number-triples
3 1,1,2), (1,2,3), (2,3,4), (3,4,5), ...

It is then easy by a A-formula H to erase all but
the first number of each triple so as to obtain

(4) 1, 1, 2, 3, ...,

which is the sequence of values of the predecessor
function P. Thus An.H(n(G,A)) A-defines P;
abbreviate it "P". When I brought this result to
Church, he told me that he had just about convinced
himself that there is no A-definition of the

1.Histon}aredecessor function.

1A014 20

A-calculus — Undecidabillity
(1936)

1935 — Kleene and Rosser showed \-calculus to be inconsistent
1936 — Church publishes the computational part (numerals etc.)

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY.!

By Aroxzo CHURCH.

The purpose of the present paper is to propose a definition of effective
calculability ® which is thought to correspond satisfactorily to the somewhat
vague intuitive notion in terms of which problems of this class are often stated,
and to show, by means of an example, that not every problem of this class
is solvable.

First undecidable problem: equivalence of two A-terms

IA0O14 1. History 21

A-calculus — Consistency (1936)

1A014

SOME PROPERTIES OF CONVERSION*

BY
ALONZO CHURCH axp J. B. ROSSER

COROLLARY 2. If A has a normal form, its normal form is unique (to within
applications of Rule I).

THEOREM 2. If B is a normal form of A, then there is a number m such
that any sequence of reductions starting from A will lead to B (to within applica-
tions of Rule 1) after at most m reductions.

Proof that g-reduction is confluent.

1. History

22

Effective Computability Models

e Alonzo Church: Lambda calculus
An unsolvable problem of elementary number theory (Abstract)
Bulletin the American Mathematical Society, May 1935

Two other notions defined independently:

e Stephen C. Kleene: Recursive functions
General recursive functions of natural numbers (Abstract)
Bulletin the American Mathematical Society, July 1935

e Alan M. Turing: Turing machines
On computable numbers, with an application to the
Entscheidungsproblem
Proceedings of the London Mathematical Society, received 25 May
1936

IA0O14 1. History 23

Alan Turing (1912-1954)

A.Turing — Equivalence (1937)

1A014

COMPUTABILITY AND)\-DEFINABILITY
A. M. TURING

Several definitions have been given to express an exact meaning correspond-
ing to the intuitive idea of ‘effective calculability’ as applied for instance to func-
tions of positive integers. The purpose of the present paper is to show that the
computable! functions introduced by the authorare identical with the A-definable?
functions of Church and the general recursive? functions due to Herbrand and
Gédel and developed by Kleene. It is shown that every A-definable function is
computable and that every computable function is general recursive. There is a

The identification of ‘effectively calculable’ functions with computable func-
tions is possibly more convincing than an identification with the A-definable or
general recursive functions. For those who take this view the formal proof of
equivalence provides a justification for Church’s calculus, and allows the
‘machines’ which generate computable functions to be replaced by the more
convenient A-definitions.

1. History

25

Typed A-calculi (A —)

Two flavors

 Implicitly typed
o Haskell B. Curry, 1934
e I=(xx):A—- A
e I=(\xx):(A— B)— (A— B)

« Explicitly typed
e Alonzo Church, 1940
o Iy =(MxAx):A— A
e Iy ,5=(x:(A—>B)x):(A— B)— (A— B)

Later developments
» Higher-order A-calculi

o Girard, 1972
e system F, system Fw

1A014 1. History

Models for \-calculus

Is there is set theoretic model for \-calculus?

Naturally, we would need a set D isomorphic to the function
space D — D.
Problem: D and D — D have different cardinality!

Solution: D. Scott 1969
e model D,
e consider only continuous functions with appropriate
topology

model in cartesian closed category of complete lattices and Scott continuous functions

e then such domain D can be found

Led to the development of denotational semantics.

1A014 1. History

27

Functional programming timeline

1A014

Lisp (McCarthy, 1960)

Iswim (Landin, 1966)

Scheme (Steele and Sussman, 1975)

ML (Milner, Gordon, Wadsworth, 1979)
Miranda (Turner, 1985)

Haskell (Hudak, Peyton Jones, Wadler, 1987)
OCaml (Leroy, 1996)

Erlang (Armstrong, Virding, Williams, 1996)
Scala (Odersky, 2004)

F# (Syme, 2006)

1. History 28

LISP (1958)

LISt Processing
Lots of Irritating Superfluous Parentheses

¢ John McCarthy (MIT)

e eager evaluation
» impure features

e assignment

e dynamic binding (confusion between local and global
variables)

e Quote operator

o fixed-point operator LABEL (implemented as cycle)

1A014 1. History

29

ML (1973)

Robin Milner (University of Edinburgh)

eager evaluation

implicit typing (Curry style)

types are automatically derived (Hindley-Milner alg.)
type-safe exception handling

impure (assignments)

main additions to A —
* new primitives
« fixed point combinator Y
o arithmetic operators

e ’let’ construction
let x be N in M end.

|IA0O14 1. History 30

Robin Milner (1934-2010)

1A014 1. History

31

1A014

Haskell (1990)

designed by committee (P. Hudak, J. Hughes, S. Peyton
Jones, P. Wadler, ...)

lazy evaluation (non-strict)

parametric type polymorphism (System F)
purely functional

type classes

side-effects through monads

1. History

32

1A014

Where can you find FP
languages?

telecommunications: Erlang — Ericsson

banking: Credit Suisse (F#), ABN (Haskell), Bank of
America (Haskell)

insurance: Grange Insurance (F#)
web applications: Facebook (OCaml))

verification: SLAM — Microsoft, ASTREE — Inria (both
OCaml)

user applications: Unison (OCaml)
mathematical libraries: FFTW (OCaml)
automated theorem proving: Coq (OCaml)
development tools: Darcs (Haskell)

1. History

33

Functional features in imperative

1A014

languages

anonymous functions
(JavaScript, Python, Ruby, C#)

(some) higher-order functions

(e.g. Python: filter, map)

map(lambda x: x ** 3, [2, 4, 6, 8])
partial function application (Python)

add5 = partial (add, 5)

add5(15)

lists (Python, C#, ...),

list comprehensions (Python)

(type derivation (C# 3.0, C++11, Visual Basic 9.0))

1. History

34

Reading list

J. Hughes: Why Functional Programming Matters

H. Barendregt: The impact of the lambda calculus
in logic and computer science

Cardone, Hindley: History of Lambda-calculus and Combinatory
Logic

1A014 1. History 35

	Course information
	(Short) History of -calculus (and functional programming)

