
IA014: Advanced Functional
Programming

Course information
1. History of λ-calculus

Jan Obdržálek obdrzalek@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

IA014 1. History 1

mailto:obdrzalek@fi.muni.cz

Course information

IA014 1. History 2

Course organization

Lectures
• Thursday, 12 noon, D2
• language: English
• slides will be available (IS)

Exam
• midterm exam (worth 15 % of the points)
• final exam (85 %)
• both written
• in English, but you may answer in Czech
• k and z completion possible

IA014 1. History 3

Prerequisites

• no formal requirements
• some experience with functional programming

• evaluation, recursion, abstract data types, pattern matching,
lists (including comprehensions), higher-order functions, . . .

• e.g. to the extent covered by
IB015 – Non-imperative programming

• you should be able to write simple functional programs
• you will have first few weeks to catch-up on FP, if you are

willing to work
• we will use mostly Haskell

• but if you know ML (OCaml, F#, . . .) you should be fine
(see the recommended literature)

IA014 1. History 4

Topics covered

• history of λ-calculus (and functional programming)
• λ-calculus

• untyped λ-calculus
• simply typed λ-calculus
• polymorphic λ-calculus (system F)

• type inference (Hindley-Milner alg.)
• type system extensions
• type classes
• functors, monads
• monad transformers
• purely functional data structures
• concurrency
• applications

• DSL - Domain specific languages
• Quickcheck - type based property testing
• dependent types: Agda and Coq

IA014 1. History 5

Reading

• There is no book covering the whole course.

• Some topics cannot be found in any book at all.

• I will use various research papers (available in IS)

https://is.muni.cz/auth/el/1433/podzim2014/IA014/index.qwarp

some (more or less) general books

• B. O’Sullivan, J. Goerzen and D. Stewart: Real World Haskell

• M. Lipovača: Learn You a Haskell for Great Good!

• G. Michaelson: An Introduction to Functional Programming
Through Lambda Calculus

• C. Okasaki: Purely Functional Data Sructures

• B. Pierce: Types and Programming Languages

IA014 1. History 6

https://is.muni.cz/auth/el/1433/podzim2014/IA014/index.qwarp

Real World Haskell

http://book.realworldhaskell.org/

IA014 1. History 7

http://book.realworldhaskell.org/

Learn You a Haskell

http://learnyouahaskell.com/

IA014 1. History 8

http://learnyouahaskell.com/

(Short) History of λ-calculus
(and functional programming)

Based on a talk “Church’s Coincidences” by Phil Wadler.

IA014 1. History 9

David Hilbert (1862-1943)

IA014 1. History 10

Entscheidungsproblem
Hilbert, 1928

Does there exists an algorithm with the following properties:
INPUT: formula φ of First Order logic

(+ finite number of extra axioms, e.g. Peano arithmetic)
OUTPUT: YES iff φ is true (universally valid)

• Many problems could then be automatically solved:
• Goldbach Conjecture
• Riemann Hypothesis
• Diophantine Equations (Hilbert’s 10th problem)
• . . .

• “Little detail”: what is meant by algorithm?
• We need a notion of effective computability

IA014 1. History 11

David Hilbert (1862-1943)

IA014 1. History 12

David Hilbert (1862-1943)

IA014 1. History 12

David Hilbert (1862-1943)

For the mathematician there is no Ignorabimus, and, in my
opinion, not at all for natural science either. . . . The true reason
why [no one] has succeeded in finding an unsolvable problem is,
in my opinion, that there is no unsolvable problem. In contrast to
the foolish Ignorabimus, our credo avers: We must know, We
shall know.

D. Hilbert

Königsberg, 8 September 1930
Society of German Scientists and Physicians

IA014 1. History 12

Kurt Gödel (1906-1978)

IA014 1. History 13

Kurt Gödel (1906-1978)

IA014 1. History 13

Gödel’s Incompleteness
Theorem

On Formally Undecidable Propositions of Principia Mathematica
and Related Systems I (1931)

For any consistent, effectively generated formal theory that
proves certain basic arithmetic truths, there is an arithmetical
statement that is true, but not provable in the theory.

Königsberg, 7 September 1930
Conference on Epistemology

held jointly with the meetings of Society of German Scientists and PhysiciansIA014 1. History 14

Alonzo Church (1903-1995)

IA014 1. History 15

A. Church – λ-calculus (1932)

. . .

. . .

IA014 1. History 16

λ-calculus (1932)
• formal system of mathematical logic
• based on function abstraction and application using

variable binding and substitution
• intended to be a foundation of mathematics

f(x) = x2 + x+ 42

⇓
f ≡ λx.x2 + x+ 42

Notation
Then Now
x x variable

λx[N] (λx.N) abstraction
{L}(M) (L M) application

IA014 1. History 17

λ-definability

By 1932, the following could be modelled by λ-calculus:

• natural numbers
• +1 (successor)
• addition, multiplication
• exponentiation
• . . . pretty much everything!

Problem!
• How to define the predecessor (-1) operation?
• If that would not be definable, then λ-calculus does not

capture the notion of effective computability!
• Solution: S. Kleene, 1932

IA014 1. History 18

Stephen Kleene (1909-1994)

IA014 1. History 19

S. Kleene – predecessor (1932)

IA014 1. History 20

λ-calculus – Undecidability
(1936)

1935 – Kleene and Rosser showed λ-calculus to be inconsistent
1936 – Church publishes the computational part (numerals etc.)

. . .

First undecidable problem: equivalence of two λ-terms

IA014 1. History 21

λ-calculus – Consistency (1936)

. . .

. . .

Proof that β-reduction is confluent.

IA014 1. History 22

Effective Computability Models

• Alonzo Church: Lambda calculus
An unsolvable problem of elementary number theory (Abstract)
Bulletin the American Mathematical Society, May 1935

Two other notions defined independently:

• Stephen C. Kleene: Recursive functions
General recursive functions of natural numbers (Abstract)
Bulletin the American Mathematical Society, July 1935

• Alan M. Turing: Turing machines
On computable numbers, with an application to the
Entscheidungsproblem
Proceedings of the London Mathematical Society, received 25 May
1936

IA014 1. History 23

Alan Turing (1912-1954)

IA014 1. History 24

A.Turing – Equivalence (1937)

· · ·

IA014 1. History 25

Typed λ-calculi (λ→)

Two flavors
• Implicitly typed

• Haskell B. Curry, 1934
• I = (λx.x) : A→ A
• I = (λx.x) : (A→ B)→ (A→ B)

• Explicitly typed
• Alonzo Church, 1940
• IA = (λx:A.x) : A→ A
• IA→B = (λx:(A→ B).x) : (A→ B)→ (A→ B)

Later developments
• Higher-order λ-calculi

• Girard, 1972
• system F, system Fω

IA014 1. History 26

Models for λ-calculus

Is there is set theoretic model for λ-calculus?

Naturally, we would need a set D isomorphic to the function
space D → D.

Problem: D and D → D have different cardinality!

Solution: D. Scott 1969
• model D∞

• consider only continuous functions with appropriate
topology
model in cartesian closed category of complete lattices and Scott continuous functions

• then such domain D can be found

Led to the development of denotational semantics.

IA014 1. History 27

Functional programming timeline

• Lisp (McCarthy, 1960)
• Iswim (Landin, 1966)
• Scheme (Steele and Sussman, 1975)
• ML (Milner, Gordon, Wadsworth, 1979)
• Miranda (Turner, 1985)
• Haskell (Hudak, Peyton Jones, Wadler, 1987)
• OCaml (Leroy, 1996)
• Erlang (Armstrong, Virding, Williams, 1996)
• Scala (Odersky, 2004)
• F# (Syme, 2006)

IA014 1. History 28

LISP (1958)
First functional programming language

LISt Processing
Lots of Irritating Superfluous Parentheses

• John McCarthy (MIT)
• eager evaluation
• impure features

• assignment
• dynamic binding (confusion between local and global

variables)
• Quote operator
• fixed-point operator LABEL (implemented as cycle)

IA014 1. History 29

ML (1973)
First important typed FL

• Robin Milner (University of Edinburgh)
• eager evaluation
• implicit typing (Curry style)
• types are automatically derived (Hindley-Milner alg.)
• type-safe exception handling
• impure (assignments)

main additions to λ→
• new primitives

• fixed point combinator Y
• arithmetic operators

• ’let’ construction
let x be N in M end.

IA014 1. History 30

Robin Milner (1934-2010)

IA014 1. History 31

Haskell (1990)
Being Lazy with Class

• designed by committee (P. Hudak, J. Hughes, S. Peyton
Jones, P. Wadler, . . .)

• lazy evaluation (non-strict)
• parametric type polymorphism (System F)
• purely functional
• type classes
• side-effects through monads

IA014 1. History 32

Where can you find FP
languages?

• telecommunications: Erlang – Ericsson
• banking: Credit Suisse (F#), ABN (Haskell), Bank of

America (Haskell)

• insurance: Grange Insurance (F#)

• web applications: Facebook (OCaml))
• verification: SLAM – Microsoft, ASTRÉE – Inria (both

OCaml)

• user applications: Unison (OCaml)

• mathematical libraries: FFTW (OCaml)

• automated theorem proving: Coq (OCaml)

• development tools: Darcs (Haskell)

IA014 1. History 33

Functional features in imperative
languages

• anonymous functions
(JavaScript, Python, Ruby, C#)

• (some) higher-order functions
(e.g. Python: filter, map)
map(lambda x: x ** 3, [2, 4, 6, 8])

• partial function application (Python)
add5 = partial (add, 5)

add5(15)

• lists (Python, C#, . . .),
list comprehensions (Python)

• (type derivation (C# 3.0, C++11, Visual Basic 9.0))

IA014 1. History 34

Reading list

J. Hughes: Why Functional Programming Matters

H. Barendregt: The impact of the lambda calculus
in logic and computer science

Cardone, Hindley: History of Lambda-calculus and Combinatory
Logic

IA014 1. History 35

	Course information
	(Short) History of -calculus (and functional programming)

