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Formal development
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Syntax

The set of λ-terms is defined by the following BNF grammar:

M ::= x variable
| MM ′ application
| λx.M abstraction

• where x, y, z, . . . are variables from a countable set Var
• we use uppercase letters M,N, . . . to denote λ-terms
• (, ) are used whenever the meaning is not clear

examples

I ≡ λx.x K ≡ λx.(λy.x)

ω ≡ λx.(x x) S ≡ λx.(λy.(λz.((x z)(y z))))
Ω ≡ ω ω ≡ (λx.(x x))(λx.(x x))
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Syntactic conventions

• λx1x2 . . . xn.M means λx1.(λx2.(. . . (λxn.M) . . .))

• M1M2M3 . . .Mn means (. . . ((M1M2)M3) . . .)
application associates to the left

• λx.x y means λx.(x y)
function application takes precedence

• spaces have no meaning

Examples

simplified
λx.(x y z) λx.x y z
(λx.x) y (λx.x) y
λx.(λy.x) λxy.x

λx.(λy.(λz.((x z) (y z))) λxyz.(x z) (y z)
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Variable binding

In a term λx.M the variable x is bound in the body M .

• λ is an abstraction operator and M is its scope.
• occurrence of a variable is free if it is not bound

Formally The set of free variables, FV (M), in a λ-term M is
defined as:

FV (x) = x

FV (MN) = FV (M) ∪ FV (N)

FV (λx.M) = FV (M) \ {x}

If FV (M) = ∅, then M is called a closed term or a combinator.
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Binding examples

term free bound
λx.x y y x
(λx.x y) x x, y x
λxy.x −− x, y
(λx.x x)(λx.x x) −− x

Convention we will use: the names of free and bound variables
will always be different.
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Substitution

M [x := N ] – the substitution of N for the free occurrences of x
in M , is defined as:

x[x := N ] = N

y[x := N ] = y if y 6= x

(M1M2)[x := N ] = (M1[x := N ])(M2[x := N ])

(λx.M)[x := N ] = λx.M

(λy.M)[x := N ] = λy.(M [x := N ]) if x 6= y

provided y 6∈ FV (N)

In the last case, if y 6∈ FV (N) we say that y is fresh for N .

IA014 2. Untyped Lambda Calculus 7



Substitution II

comments

The freshness requirement is absolutely crucial:

λy.x[x := y] 6= λy.y name capture

Our substitution is capture-avoiding.

Alternative definition of substitution (only the last case):

(λy.M)[x := N ] = λz.M [y := z][x := N ]

provided x 6= y and z 6∈ FV (M) ∪ FV (N) ∪ {x}

examples

(λy.x)[y := x] = λy.x

(λy.x)[x := y] = λz.y

(λx.(λy.y z) (λw.w) z x)[y := z] = . . .
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α-conversion and equivalence

Observation: The terms λx.x and λy.y are, for all practical
purposes, equivalent.

The α-equivalence relation, =α, is defined by the following
rules:

M [x := z] =α N [y := z] z 6∈ FV (M) ∪ FV (N)

λx.M =α λy.N

x =α x
M1 =α M2 N1 =α N2

M1N1 =α M2N2

Renaming bound variables is often called α-conversion.

Compare with the previous slide!
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β-reduction

The idea of function application is expressed by the following
equational axiom:

(λx.M)N = M [x := N ] (β)

In computational context, this can be though of as a single
computation step, called β-reduction step:

(λx.M)N →M [x := N ]

In this context, (λx.M)N is called a redex (reducible
expression).
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Full β-reduction

• a redex can appear anywhere in a term M

• Full β-reduction is then given by the following set of rules:

(λx.M)N →β M [x := N ]

M1 →β M2

λx.M1 →β λx.M2

M1 →β M2

M1N →β M2N

N1 →β N2

MN1 →β MN2

We also define a reflexive transitive closure→∗β of→β:
M →∗β N iff either M = N or there is a sequence

M →β M1 →β M2 →β . . .→β N

• We will often drop the index β from→β.
• We will work modulo α-equivalence.
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β-reduction – examples

(λx.λy.yx)(λz.u)→ λy.y(λz.u)

(λx.xx)(λz.u)→ (λz.u)(λz.u)

(λy.y a)((λx.x)(λz.(λu.u) z))→ (λy.y a)(λz.(λu.u) z)

(λy.y a)((λx.x)(λz.(λu.u) z))→ (λy.y a)((λx.x)(λz.z))

(λy.y a)((λx.x)(λz.(λu.u) z))→ ((λx.x)(λz.(λu.u)z))a

Ω ≡ (λx.x x)(λx.x x)→ (λx.x x)(λx.x x)→ . . .

KaΩ ≡ (λxy.x) a Ω

KaΩ→ a

KaΩ→KaΩ→ a

KaΩ→KaΩ→KaΩ→ a

(λx.x x)((λy.y)z)→ (λx.x x)z → z z

(λx.x x)((λy.y)z)→ ((λy.y)z)((λy.y)z)→2 z z
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Normal form, Questions

Normal form
Term M is in β-normal form iff it contains no β-redexes.

Q1: Can a term have more than one normal form?

Q2: Does a β-reduction always terminate?

Q3: Does the order of evaluation matter?

Q4: In which order should we select the redexes?
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Confluence
Q1: Can a term have more than one normal form?

Theorem (Church-Rosser)
Let M be a λ-term. If M →∗ M1 and M →∗ M2, then there is N
such that M1 →∗ N and M2 →∗ N

N

M1

*

M2

*

M

* *

(λx.x x)((λy.y)z)→ (λx.x x)z → z z

(λx.x x)((λy.y)z)→ ((λy.y)z)((λy.y)z)→2 z z
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Non-termination

Q2: Does a β-reduction always terminate?

• This is called strong normalization property.
• Untyped λ-calculus is not strongly normalizing:

Ω ≡ (λx.x x)(λx.x x)→ (λx.x x)(λx.x x)→ (λx.x x)(λx.x x)→ . . .

• Simply-typed λ-calculus is strongly normalizing.
• What does that mean?
• . . . it is decidable whether program halts . . .
• Then it is not Turing complete! (computationally universal)
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Nondeterminism

Q3: Does the order of evaluation matter?

Compare

(λx.z)((λw.www)(λw.www))→
(λx.z)((λw.www)(λw.www)(λw.www))→
(λx.z)((λw.www)(λw.www)(λw.www)(λw.www))→
. . .

with
(λx.z)((λw.www)(λw.www))→ z

The choice of evaluation (reduction) strategy matters!
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Evaluation Strategies

Q4: In which order should we select the redexes?

• Full β-reduction
• Any redex can be selected.
• As defined on slide 11

• Applicative order
• form of strict/eager evaluation
• leftmost innermost
• evaluate arguments (left to right) before applying function

• Normal order
• form of non-strict evaluation
• leftmost outermost
• applying function before evaluating arguments
• complete – if there is a normal form, it would be eventually

reached
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Call-By-Value semantics of λ

• strict/eager evaluation strategy
• unlike applicative order, does not reduce the body of the

function before applying the function
• used, e.g., by ML

M ::= x variable
| MM ′ application
| λx.M abstraction

V ::= λx.M abstraction value

(λx.M)V →β M [x := V ]

M1 →β M2

M1N →β M2N

N1 →β N2

V N1 →β V N2
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β-equivalence

β-reduction is directional. However, we can also use it
“bidirectionally”

β-equivalence
Two terms M and N are said to be β-equivalent (written as
M =β N ) if either:

1 M ≡ N , or
2 there is a sequence of terms M = M0,M1, . . .Mk = N s.t.

for all 1 ≤ i ≤ k either
• Mi−1 →Mi, or
• Mi →Mi−1

(i.e. =β is a reflexive, symmetric and transitive closure of→β)

From Church-Rosser, two normalizing terms are β-equivalent iff
their normal forms are equal.
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η-conversion (reduction)

Let us assume we have the following term:

N ≡ λx.M x

and that x is not free in M .

Observation: (λx.M x)N →β MN

η-reduction rule: x 6∈ FV (M)

(λx.M x)→η M

• removes redundant λ-abstractions
• we can define→βη-reduction
• →βη-reduction is (again) confluent
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Encoding Mathematics in
λ-calculus
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Booleans

truth values
• true := λx.λy.x

• false := λx.λy.y

true tf
= (λx.λy.x)tf

→ (λy.t)f

→ t

false tf
= (λx.λy.y)tf

→ (λy.y)f

→ f

conditional statement
• if := λxyz.xyz
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Boolean operators

truth values
• true := λx.λy.x

• false := λx.λy.y

operators
• and := λxy.x y x

• or := λxy.x x y

• not := λxyz.x z y

Check that the operators behave as expected!
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Pairs

Desired behaviour:

fst(pair x y)→∗β x
snd(pair x y)→∗β y

Idea: use Booleans for projections
• pair := λxyf.f x y

• fst := λp.p true
• snd := λp.p false

Check that the operators behave as expected!
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Church numerals

How do we construct natural numbers?
• 0, succ(0), succ(succ(0)), . . .

• the same idea is behind the Church numerals
• function, which takes 0 and succ as parameters

• 0 := λf.λx.x

• 1 := λf.λx.f x

• 2 := λf.λx.f (f x)

• 3 := λf.λx.f (f (f x))

• . . .
• n := f(f . . . (f︸ ︷︷ ︸

n-times

(x) . . .) = λf.λx.fn(x)
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Arithmetic operations

n := λf.λx.fn(x)

• successor
succ := λn.λf.λx.f (n f x)

• addition
plus := λm.λn.λf.λx.m f (n f x) or
plus := λm.λn.m succ n

• multiplication
times := λm.λn.λf.m (n f) or
using plus (exercise)

• exponentiation
(exercise)

• subtraction (assuming a predecessor)
minus := λm.λn.n pred m
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Predecessor function

n := λf.λx.fn(x)

• To compute predecessor, you have to remove one f .
• But there is no “empty” λ-term!

Wisdom tooth trick
• you count up to n, remembering also the previous number
• pairs are ideal:

(0, 0), (0, 1), (1, 2), (2, 3), (3, 4) . . .

λ-calculus encoding

step := λp.pair (snd p) (succ(snd p))

pred := λn. fst(n step (pair 0 0))
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Lists – exercise

Define lists and functions operating on them:

• nil – empty list
• null – test for emptiness
• cons – prepends element to a list
• hd – head of the list
• tl – tail of the list

Desired behaviour:

null nil→∗ true hd(cons x l)→∗ x
null (cons x l)→∗ false tl(cons x l)→∗ l
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Recursion
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Recursive functions

• As we have seen, many functions are λ-definable.
• What about the factorial?

F (n) =

{
1 if n = 0

n ∗ F (n− 1) otherwise

• Problem: in λ-calculus, functions are anonymous:
fact ≡ λn. ifn = 0 then 1 elsen ∗ fact(n− 1)

Q: No self-reference in λ-calculus?

Luckily not: ω y = (λx.x x) y → y y
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Manual recursion

Idea: recursive function f takes a definition of itself as first
argument, and passes it to the subsequent calls

G := λf.λn. ifn = 0 then 1 elsen ∗ (f f (n− 1))

fact := G G = (λx.x x) G

Works as intended (TRY IT!)

problem: every recursive call needs to be rewritten as
self-application
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More natural recursion

G := λf.λn. ifn = 0 then 1 elsen ∗ (f f (n− 1))

fact := G G = (λx.x x) G

problem: every recursive call needs to be rewritten as
self-application

Our goal: write just

G := λf.λn. ifn = 0 then 1 elsen ∗ (f (n− 1))

• Naturally, we want Gfx = fx to hold.
• I.e. Gf = f . . . we are looking for a fixed point F of G!
• We would like to do this automatically.

Find a function FIX such that F = G(FIXG) = FIXG

Does such a function exist?
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Factorial using FIX
Let us assume we have such a function FIX and take

G := λf.λn. ifn = 0 then 1 elsen ∗ (f (n− 1))

fact := FIX G = G (FIX G)

Let’s compute the factorial of 2:
fact 2 = (FIXG)2 = G(FIXG)2 =

λf.λn. ifn = 0 then 1 elsen ∗ (f(n− 1))(FIXG)2→β

λn. ifn = 0 then 1 elsen ∗ ((FIXG)(n− 1))2→β

if 2 = 0 then 1 else 2 ∗ ((FIXG)(2− 1))→δ

if 2 = 0 then 1 else 2 ∗ ((FIXG)1)→δ

2 ∗ ((FIXG)1) = 2 ∗ (G(FIXG)1) =

2 ∗ (λf.λn. ifn = 0 then 1 elsen ∗ (f(n− 1))(FIXG)1)→β

2 ∗ (λn. ifn = 0 then 1 elsen ∗ ((FIXG)(n− 1))1)→β

2 ∗ (if 1 = 0 then 1 else 1 ∗ ((FIXG)(1− 1)))→δ

2 ∗ (if 1 = 0 then 1 else 1 ∗ ((FIXG)0))→δ

2 ∗ (1 ∗ ((FIXG)0))

. . .

= 2
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Y combinator (Church)

Y := λf.(λx.f(x x)) (λx.f(x x))

Theorem
Y g = g(Y g)

Proof.
Y g = (λf.(λx.f(x x)) (λx.f(x x))) g

→ (λx.g(x x)) (λx.g(x x))

→ g((λx.g(x x))(λx.g(x x)))

← g(λf.((λx.f(x x)) (λx.f(x x))) g)

= g(Y g)

Note: Y g 6→∗ g(Y g)
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Θ combinator (Turing)

Θ := (λxf.f(x x f))(λxf.f(x x f))

Theorem
Θ g →∗ g(Θ g)

Proof.
Θ g = (λxf.f(x x f)) (λxf.f(x x f)) g

→ (λh.h ((λxf.f(x x f)) (λxf.f(x x f)) h)) g

→ g((λxf.f(x x f)) (λxf.f(x x f)) g)

= g(Θ g)
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From λ-calculus to functional
programming I
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Applied λ-calculi

applied λ-calculus = λ-calculus + constants (+ operations)

But we have just seen that we can do everything with pure
λ-calculus!?

Why applied λ-calculi?

• efficiency
• reliability
• convenience
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Formally

syntax
The set of lambda terms with constants Λ(C) is defined by:

M ::= x |M M ′ | λx.M | C

Where C ∈ C for some set of constants C.

Different applied λ-calculi arise by a different choice of the set
C.

IA014 2. Untyped Lambda Calculus 38



δ-reduction

Let
• X ⊆ Λ(C) be a set of closed normal forms

(usually we take X ⊆ C)
• δ ∈ C a special constant
• f : X → Λ(C) externally defined function

Then the following δ-contraction rules are added to those of the
(pure) λ-calculus:

δM1 . . .Mk → f(M1 . . .Mk)

for M1, . . .Mk in X.
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δ-rule examples I

Booleans

C = true, false,not,and,or, ite

δ-rules

not true→ false ite true→ true(≡ λxy.x)

not false→ true ite false→ false(≡ λxy.y)

and true true→ true or true true→ true

and true false→ false or true false→ true

and false true→ false or false true→ true

and false false→ false or false false→ false
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δ-rule examples II

Integers

C = {n|n ∈ Z} ∪ plus,minus, times,divide, equal

δ-rule schemas

plus m n→ m+ n

minus m n→ m− n
times m n→ m ∗ n

divide m n→ m÷ n for n 6= 0

divide m 0→ error

equal m m→ true

equal m n→ false for m 6= n

IA014 2. Untyped Lambda Calculus 41



βδ-reduction

The “combined” reduction of the “new” calculus is called
βδ-reduction, written as→βδ (→∗βδ).

Theorem
Let f be a function on closed normal forms. Then the resulting
notion of reduction→∗βδ satisfies the Church-Rosser property.

The notion of normal form also generalizes.
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Syntactic sugar

Definition (Syntactic sugar)
Programming language construct, which can be removed from
the language without any effect on:
• functionality
• expressive power

Why do we need sugar?
To make language sweeter for humans. Can e.g.

• improve readability
• be more concise
• more natural to some
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Sugar I – functions

• binary arithmetic operators (+,−, ∗, . . .) in infix notation
4 + 5 =⇒ + 4 5 =⇒ plus 4 5

• comparison operators (<,≤,=, 6=, . . .) in infix notation
4 < 5 =⇒ < 4 5

• if-then-else
if p then x else y =⇒ ite p x y
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Sugar II – local declarations

let x = M in N =⇒ (λx.N)M

recursive declarations

letrec x = M in N =⇒ (λx.N) (Y λx.M)

example:

letrec f = lambda n.if n=1 then 1

else n * (f(n-1))

in f 5

is desugared to

(λf.f 5) (Y λf.λn. if (= n 1)1(∗ n (f (− n 1))))
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Sugar III – function declarations

let f x1 . . . xn = M inN
=⇒ let fλx1 . . . λxn.M inN
=⇒ (λf.N)(x1 . . . λxn.M)

and similarly

letrec f x1 . . . xn = M in N

=⇒ letrec fλx1 . . . λxn.M in N
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