IA014: Advanced Functional Programming

2. Untyped Lambda Calculus

Jan Obdržálek obdrzalek@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Formal development

Syntax

The set of λ -terms is defined by the following BNF grammar:

M ::=	x	variable
	MM'	application
	$\lambda x.M$	abstraction

- where *x*, *y*, *z*, ... are *variables* from a countable set *Var*
- we use uppercase letters M, N, \ldots to denote λ -terms
- (,) are used whenever the meaning is not clear

examples

 $I \equiv \lambda x.x \qquad K \equiv \lambda x.(\lambda y.x)$ $\omega \equiv \lambda x.(x x) \qquad S \equiv \lambda x.(\lambda y.(\lambda z.((x z)(y z))))$ $\Omega \equiv \omega \omega \equiv (\lambda x.(x x))(\lambda x.(x x))$

Syntactic conventions

- $\lambda x_1 x_2 \dots x_n M$ means $\lambda x_1 (\lambda x_2 (\dots (\lambda x_n M) \dots))$
- $M_1 M_2 M_3 \dots M_n$ means $(\dots ((M_1 M_2) M_3) \dots)$ application associates to the left
- $\lambda x.x \ y$ means $\lambda x.(x \ y)$ function application takes precedence
- spaces have no meaning

Examples

$$\begin{array}{c} \begin{array}{c} \text{simplified} \\ \lambda x.(x \ y \ z) & \lambda x.x \ y \ z \\ (\lambda x.x) \ y & (\lambda x.x) \ y \\ \lambda x.(\lambda y.x) & \lambda xy.x \\ x.(\lambda y.(\lambda z.((x \ z) \ (y \ z))) & \lambda xyz.(x \ z) \ (y \ z) \end{array}$$

Variable binding

In a term $\lambda x.M$ the variable x is *bound* in the *body* M.

- λ is an *abstraction operator* and *M* is its *scope*.
- occurrence of a variable is free if it is not bound

Formally The set of *free variables*, FV(M), in a λ -term M is defined as:

$$FV(x) = x$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

If $FV(M) = \emptyset$, then M is called a *closed term* or a *combinator*.

Binding examples

term	free	bound
$\lambda x.x y$	y	x
$(\lambda x.x \ y) \ x$	x, y	x
$\lambda xy.x$		x, y
$(\lambda x.x \ x)(\lambda x.x \ x)$		x

Convention we will use: the names of free and bound variables will always be different.

Substitution

M[x := N] – the *substitution* of N for the free occurrences of x in M, is defined as:

$$\begin{split} x[x &:= N] = N \\ y[x &:= N] = y & \text{if } y \neq x \\ (M_1 M_2)[x &:= N] = (M_1[x &:= N])(M_2[x &:= N]) \\ (\lambda x.M)[x &:= N] = \lambda x.M \\ (\lambda y.M)[x &:= N] = \lambda y.(M[x &:= N]) & \text{if } x \neq y \\ \text{provided } y \notin FV(N) \end{split}$$

In the last case, if $y \notin FV(N)$ we say that y is *fresh* for N.

Substitution II

comments

The freshness requirement is absolutely crucial:

 $\lambda y.x[x := y] \neq \lambda y.y$ name capture Our substitution is *capture-avoiding*.

Alternative definition of substitution (only the last case):

$$(\lambda y.M)[x:=N] = \lambda z.M[y:=z][x:=N]$$

provided $x \neq y$ and $z \notin FV(M) \cup FV(N) \cup \{x\}$

examples

$$\begin{aligned} &(\lambda y.x)[y:=x] = \lambda y.x\\ &(\lambda y.x)[x:=y] = \lambda z.y\\ &(\lambda x.(\lambda y.y\ z)\ (\lambda w.w)\ z\ x)[y:=z] = \dots\end{aligned}$$

α -conversion and equivalence

Observation: The terms $\lambda x.x$ and $\lambda y.y$ are, for all practical purposes, equivalent.

The α -equivalence relation, $=_{\alpha}$, is defined by the following rules:

 $\frac{M[x := z] =_{\alpha} N[y := z]}{\lambda x.M =_{\alpha} \lambda y.N} \neq FV(M) \cup FV(N)$ $\frac{M_1 =_{\alpha} M_2 N_1 =_{\alpha} N_2}{M_1 N_1 =_{\alpha} M_2 N_2}$

Renaming bound variables is often called α -conversion.

Compare with the previous slide!

β -reduction

The idea of *function application* is expressed by the following equational axiom:

$$(\lambda x.M)N = M[x := N] \tag{\beta}$$

In computational context, this can be though of as a single computation step, called β -reduction step:

 $(\lambda x.M)N \to M[x := N]$

In this context, $(\lambda x.M)N$ is called a *redex* (reducible expression).

Full β -reduction

- a redex can appear anywhere in a term M
- *Full* β *-reduction* is then given by the following set of rules:

$$\frac{M_1 \to_\beta M_2}{(\lambda x.M)N \to_\beta M[x:=N]} = \frac{M_1 \to_\beta M_2}{\lambda x.M_1 \to_\beta \lambda x.M_2}$$
$$\frac{M_1 \to_\beta M_2}{M_1 N \to_\beta M_2 N} = \frac{N_1 \to_\beta N_2}{MN_1 \to_\beta MN_2}$$

We also define a *reflexive transitive closure* \rightarrow^*_{β} of \rightarrow_{β} : $M \rightarrow^*_{\beta} N$ iff either M = N or there is a sequence

$$M \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} \ldots \to_{\beta} N$$

- We will often drop the index β from \rightarrow_{β} .
- We will work modulo α-equivalence.
- IA014 2. Untyped Lambda Calculus

β -reduction – examples

$$\begin{aligned} &(\lambda x.\lambda y.yx)(\lambda z.u) \to \lambda y.y(\lambda z.u)\\ &(\lambda x.xx)(\lambda z.u) \to (\lambda z.u)(\lambda z.u)\\ &(\lambda y.y\ a)((\lambda x.x)(\lambda z.(\lambda u.u)\ z)) \to (\lambda y.y\ a)(\lambda z.(\lambda u.u)\ z)\\ &(\lambda y.y\ a)((\lambda x.x)(\lambda z.(\lambda u.u)\ z)) \to (\lambda y.y\ a)((\lambda x.x)(\lambda z.z))\\ &(\lambda y.y\ a)((\lambda x.x)(\lambda z.(\lambda u.u)\ z)) \to ((\lambda x.x)(\lambda z.(\lambda u.u)z))a\end{aligned}$$

$$\begin{split} \mathbf{\Omega} &\equiv (\lambda x.x \; x)(\lambda x.x \; x) \to (\lambda x.x \; x)(\lambda x.x \; x) \to \dots \\ \mathbf{K}a\mathbf{\Omega} &\equiv (\lambda xy.x) \; a \; \mathbf{\Omega} \\ \mathbf{K}a\mathbf{\Omega} \to a \\ \mathbf{K}a\mathbf{\Omega} \to \mathbf{K}a\mathbf{\Omega} \to a \\ \mathbf{K}a\mathbf{\Omega} \to \mathbf{K}a\mathbf{\Omega} \to \mathbf{K}a\mathbf{\Omega} \to a \\ (\lambda x.x \; x)((\lambda y.y)z) \to (\lambda x.x \; x)z \to z \; z \\ (\lambda x.x \; x)((\lambda y.y)z) \to ((\lambda y.y)z)((\lambda y.y)z) \to^2 z \; z \end{split}$$

Normal form, Questions

Normal form

Term M is in β -normal form iff it contains no β -redexes.

- Q1: Can a term have more than one normal form?
- **Q2:** Does a β -reduction always terminate?
- Q3: Does the order of evaluation matter?
- Q4: In which order should we select the redexes?

Confluence

Q1: Can a term have more than one normal form?

Theorem (Church-Rosser)

Let *M* be a λ -term. If $M \to^* M_1$ and $M \to^* M_2$, then there is *N* such that $M_1 \to^* N$ and $M_2 \to^* N$

$$\begin{aligned} &(\lambda x.x \; x)((\lambda y.y)z) \to (\lambda x.x \; x)z \to z \; z \\ &(\lambda x.x \; x)((\lambda y.y)z) \to ((\lambda y.y)z)((\lambda y.y)z) \to^2 z \; z \end{aligned}$$

Non-termination

Q2: Does a β -reduction always terminate?

- This is called strong normalization property.
- Untyped λ -calculus *is not* strongly normalizing:

 $\mathbf{\Omega} \equiv (\lambda x.x \, x)(\lambda x.x \, x) \to (\lambda x.x \, x)(\lambda x.x \, x) \to (\lambda x.x \, x)(\lambda x.x \, x) \to \dots$

- Simply-typed λ -calculus *is* strongly normalizing.
 - What does that mean?
 - ... it is decidable whether program halts ...
 - Then it is not *Turing complete*! (computationally universal)

Nondeterminism

Q3: Does the order of evaluation matter? Compare

 $\begin{aligned} &(\lambda x.z)((\lambda w.www)(\lambda w.www)) \rightarrow \\ &(\lambda x.z)((\lambda w.www)(\lambda w.www)(\lambda w.www)) \rightarrow \\ &(\lambda x.z)((\lambda w.www)(\lambda w.www)(\lambda w.www)(\lambda w.www)) \rightarrow \end{aligned}$

with

. . .

$$(\lambda x.z)((\lambda w.www)(\lambda w.www)) \to z$$

The choice of evaluation (reduction) strategy matters!

Evaluation Strategies

Q4: In which order should we select the redexes?

- Full β-reduction
 - Any redex can be selected.
 - As defined on slide 11
- Applicative order
 - form of strict/eager evaluation
 - leftmost innermost
 - evaluate arguments (left to right) before applying function
- Normal order
 - form of non-strict evaluation
 - leftmost outermost
 - applying function before evaluating arguments
 - complete if there is a normal form, it would be eventually reached

Call-By-Value semantics of λ

- strict/eager evaluation strategy
- unlike applicative order, does not reduce the body of the function before applying the function
- used, e.g., by ML

M ::=	x	variable
	MM'	application
	$\lambda x.M$	abstraction
V ::=	$\lambda x.M$	abstraction value

$$\begin{array}{l} (\lambda x.M)V \rightarrow_{\beta} M[x:=V] \\ \\ \hline \frac{M_1 \rightarrow_{\beta} M_2}{M_1 N \rightarrow_{\beta} M_2 N} & \hline \frac{N_1 \rightarrow_{\beta} N_2}{V N_1 \rightarrow_{\beta} V N_2} \end{array}$$

β -equivalence

 $\beta\text{-reduction}$ is directional. However, we can also use it "bidirectionally"

β -equivalence

Two terms M and N are said to be β -equivalent (written as $M =_{\beta} N$) if either:

1 $M \equiv N$, or

2 there is a sequence of terms $M = M_0, M_1, \dots M_k = N$ s.t. for all $1 \le i \le k$ either

- $M_{i-1} \rightarrow M_i$, or
- $M_i \to M_{i-1}$

(i.e. $=_{\beta}$ is a reflexive, symmetric and transitive closure of \rightarrow_{β})

From Church-Rosser, two normalizing terms are β -equivalent iff their normal forms are equal.

η -conversion (reduction)

Let us assume we have the following term:

 $N \equiv \lambda x.M \ x$

and that x is not free in M.

Observation: $(\lambda x.M \ x)N \rightarrow_{\beta} MN$

 η -reduction rule: $\frac{x \notin FV(M)}{(\lambda x.M \ x) \to_{\eta} M}$

- removes redundant λ-abstractions
- we can define $\rightarrow_{\beta\eta}$ -reduction
- $\rightarrow_{\beta\eta}$ -reduction is (again) confluent

Encoding Mathematics in λ -calculus

Booleans

truth values

- true := $\lambda x . \lambda y . x$
- false := $\lambda x.\lambda y.y$

true tf= $(\lambda x.\lambda y.x)tf$ $\rightarrow (\lambda y.t)f$ $\rightarrow t$ false tf= $(\lambda x.\lambda y.y)tf$ $\rightarrow (\lambda y.y)f$ $\rightarrow f$

conditional statement

• if := $\lambda xyz.xyz$

Boolean operators

truth values

- true := $\lambda x . \lambda y . x$
- false := $\lambda x.\lambda y.y$

operators

- and := $\lambda xy.x \ y \ x$
- or := $\lambda xy.x \ x \ y$
- not := $\lambda xyz.x \ z \ y$

Check that the operators behave as expected!

Pairs

Desired behaviour:

fst(pair $x y) \rightarrow^*_{\beta} x$ snd(pair $x y) \rightarrow^*_{\beta} y$

Idea: use Booleans for projections

- pair := $\lambda xyf.f x y$
- fst := $\lambda p.p$ true
- snd := $\lambda p.p$ false

Check that the operators behave as expected!

Church numerals

How do we construct natural numbers?

- $0, succ(0), succ(succ(0)), \ldots$
- the same idea is behind the Church numerals
- function, which takes 0 and *succ* as parameters
- $\underline{0} := \lambda f.\lambda x.x$ • $\underline{1} := \lambda f.\lambda x.f x$ • $\underline{2} := \lambda f.\lambda x.f (f x)$ • $\underline{3} := \lambda f.\lambda x.f (f (f x))$ • ... • $\underline{n} := \underbrace{f(f...(f(x)...) = \lambda f.\lambda x.f^n(x))}_{n-\text{times}}$

Arithmetic operations

 $\underline{n} := \lambda f.\lambda x.f^n(x)$

- successor succ := $\lambda n.\lambda f.\lambda x.f(n f x)$
- addition plus := $\lambda m.\lambda n.\lambda f.\lambda x.m f(n f x)$ or plus := $\lambda m.\lambda n.m$ succ n
- multiplication times := $\lambda m.\lambda n.\lambda f.m (n f)$ or using plus (exercise)
- exponentiation (exercise)
- subtraction (assuming a predecessor) minus := $\lambda m.\lambda n.n$ pred m
- IA014 2. Untyped Lambda Calculus

Predecessor function

 $\underline{n} := \lambda f.\lambda x.f^n(x)$

- To compute predecessor, you have to remove one f.
- But there is no "empty" λ-term!

Wisdom tooth trick

- you count up to n, remembering also the previous number
- *pairs* are ideal: (0,0), (0,1), (1,2), (2,3), (3,4)...

 λ -calculus encoding

step :=
$$\lambda p$$
. pair (snd p) (succ(snd p))

 $\mathsf{pred} := \lambda n.\,\mathsf{fst}(n \; \operatorname{step}\; (\mathsf{pair}\; \underline{0}\; \underline{0}))$

Lists – exercise

Define lists and functions operating on them:

- nil empty list
- null test for emptiness
- cons prepends element to a list
- hd head of the list
- tl tail of the list

Desired behaviour:

null nil \rightarrow^* true null (cons $x \ l$) \rightarrow^* false hd(cons x l) $\rightarrow^* x$ tl(cons x l) $\rightarrow^* l$

Recursion

Recursive functions

- As we have seen, many functions are λ -definable.
- What about the factorial?

$$F(n) = \begin{cases} 1 & \text{if } n = 0\\ n * F(n-1) & \text{otherwise} \end{cases}$$

• Problem: in λ -calculus, functions are anonymous: fact $\equiv \lambda n$. if n = 0 then 1 else n * fact(n - 1)

Q: No self-reference in λ -calculus?

Luckily not: $\omega y = (\lambda x.x x) y \rightarrow y y$

Manual recursion

Idea: recursive function f takes a definition of itself as first argument, and passes it to the subsequent calls

$$\begin{split} G := \lambda f.\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n*(f \ f \ (n-1)) \\ \text{fact} := G \ G = (\lambda x.x \ x) \ G \end{split}$$

Works as intended (TRY IT!)

problem: every recursive call needs to be rewritten as self-application

More natural recursion

$$\begin{split} G &:= \lambda f.\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n*(f \ f \ (n-1)) \\ \text{fact} &:= G \ G = (\lambda x.x \ x) \ G \end{split}$$

problem: every recursive call needs to be rewritten as self-application

Our goal: write just

 $G := \lambda f \cdot \lambda n$. if n = 0 then 1 else n * (f (n - 1))

- Naturally, we want Gfx = fx to hold.
- I.e. $Gf = f \dots$ we are looking for a *fixed point* F of G!
- We would like to do this *automatically*.

Find a function **FIX** such that $F = G(\mathbf{FIX} G) = \mathbf{FIX} G$

Does such a function exist?

IA014 2. Untyped Lambda Calculus

Factorial using FIX

Let us assume we have such a function $\ensuremath{\mathbf{FIX}}$ and take

$$G := \lambda f.\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n * (f (n-1))$$
$$\text{fact} := \mathbf{FIX} \ G = G (\mathbf{FIX} \ G)$$

Let's compute the factorial of 2: fact $2 = (\mathbf{FIX} G)2 = G(\mathbf{FIX} G)2 =$ $\lambda f \cdot \lambda n$. if n = 0 then 1 else $n * (f(n-1))(\mathbf{FIX} G)_2 \rightarrow_{\beta}$ λn . if n = 0 then 1 else $n * ((\mathbf{FIX} G)(n-1)) 2 \rightarrow_{\beta}$ if 2 = 0 then 1 else $2 * ((\mathbf{FIX} G)(2-1)) \rightarrow_{\delta}$ if 2 = 0 then 1 else $2 * ((\mathbf{FIX} G)1) \rightarrow_{\delta}$ $2 * ((\mathbf{FIX} G)1) = 2 * (G(\mathbf{FIX} G)1) =$ $2 * (\lambda f \cdot \lambda n)$ if n = 0 then 1 else $n * (f(n-1))(\mathbf{FIX} G) \to \beta$ $2 * (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n * ((\mathbf{FIX} G)(n-1))1) \rightarrow_{\beta}$ $2 * (if 1 = 0 then 1 else 1 * ((FIX G)(1-1))) \rightarrow_{\delta}$ $2 * (if 1 = 0 then 1 else 1 * ((FIX G)0)) \rightarrow_{\delta}$ $2 * (1 * ((\mathbf{FIX} G)0))$

Y combinator (Church)

$$\boldsymbol{Y} := \lambda f.(\lambda x.f(x \ x)) \ (\lambda x.f(x \ x))$$

Theorem Yg = g(Yg)Proof.

$$\begin{aligned} \mathbf{Y} \ g &= \left(\lambda f.(\lambda x.f(x \ x)) \ (\lambda x.f(x \ x))\right) g \\ &\to \left(\lambda x.g(x \ x)\right) \ (\lambda x.g(x \ x)) \\ &\to g((\lambda x.g(x \ x))(\lambda x.g(x \ x))) \\ &\leftarrow g(\lambda f.((\lambda x.f(x \ x)) \ (\lambda x.f(x \ x))) \ g) \\ &= g(\mathbf{Y}g) \end{aligned}$$

Note:
$$Y g \not\rightarrow^* g(Y g)$$

IA014 2. Untyped Lambda Calculus

Θ combinator (Turing)

$$\boldsymbol{\Theta} := (\lambda x f. f(x \ x \ f))(\lambda x f. f(x \ x \ f))$$

Theorem $\Theta \ g \rightarrow^* g(\Theta \ g)$

Proof.

$$\Theta g = (\lambda x f.f(x \ x \ f)) \ (\lambda x f.f(x \ x \ f)) \ g$$

$$\rightarrow (\lambda h.h \ ((\lambda x f.f(x \ x \ f)) \ (\lambda x f.f(x \ x \ f)) \ h)) \ g$$

$$\rightarrow g((\lambda x f.f(x \ x \ f)) \ (\lambda x f.f(x \ x \ f)) \ g)$$

$$= g(\Theta \ g)$$

From λ -calculus to functional programming I

Applied λ -calculi

applied λ -calculus = λ -calculus + constants (+ operations)

But we have just seen that we can do everything with pure λ -calculus!?

Why applied λ -calculi?

- efficiency
- reliability
- convenience

Formally

syntax The set of *lambda terms with constants* $\Lambda(\mathbb{C})$ is defined by:

 $M ::= x \mid M \; M' \mid \lambda x.M \mid C$

Where $C \in \mathbb{C}$ for some set of constants \mathbb{C} .

Different applied $\lambda\text{-calculi}$ arise by a different choice of the set $\mathbb{C}.$

δ -reduction

Let

- $X \subseteq \Lambda(\mathbb{C})$ be a set of closed normal forms (usually we take $X \subseteq \mathbb{C}$)
- $\delta \in \mathbb{C}$ a special constant
- $f: X \to \Lambda(\mathbb{C})$ externally defined function

Then the following δ -contraction rules are added to those of the (pure) λ -calculus:

$$\delta M_1 \dots M_k \to f(M_1 \dots M_k)$$

for M_1, \ldots, M_k in X.

δ -rule examples I

Booleans

 $\mathbb{C} = \mathbf{true}, \mathbf{false}, \mathbf{not}, \mathbf{and}, \mathbf{or}, \mathbf{ite}$

δ -rules

not true \rightarrow falseite true \rightarrow true $(\equiv \lambda xy.x)$ not false \rightarrow trueite false \rightarrow false $(\equiv \lambda xy.y)$ and true true \rightarrow trueor true true \rightarrow trueand true false \rightarrow falseor true false \rightarrow trueand false true \rightarrow falseor false true \rightarrow trueand false false \rightarrow falseor false false \rightarrow false

δ -rule examples II

Integers

 $\mathbb{C} = \{\mathbf{n} | n \in \mathbb{Z}\} \cup \mathbf{plus}, \mathbf{minus}, \mathbf{times}, \mathbf{divide}, \mathbf{equal}$

δ -rule schemas

 $\begin{array}{ll} \mathbf{plus} \ \mathbf{m} \ \mathbf{n} \rightarrow m+n \\ \mathbf{minus} \ \mathbf{m} \ \mathbf{n} \rightarrow m-n \\ \mathbf{times} \ \mathbf{m} \ \mathbf{n} \rightarrow m*n \\ \mathbf{divide} \ \mathbf{m} \ \mathbf{n} \rightarrow m \div n \\ \mathbf{divide} \ \mathbf{m} \ \mathbf{0} \rightarrow error \\ \mathbf{equal} \ \mathbf{m} \ \mathbf{m} \rightarrow \mathbf{true} \\ \mathbf{equal} \ \mathbf{m} \ \mathbf{n} \rightarrow \mathbf{false} \\ \end{array} \qquad \begin{array}{ll} \mathbf{for} \ m \neq n \\ \mathbf{for} \ m \neq n \end{array}$

$\beta\delta$ -reduction

The "combined" reduction of the "new" calculus is called $\beta \delta$ -*reduction*, written as $\rightarrow_{\beta \delta} (\rightarrow^*_{\beta \delta})$.

Theorem Let *f* be a function on closed normal forms. Then the resulting notion of reduction $\rightarrow^*_{\beta\delta}$ satisfies the Church-Rosser property.

The notion of normal form also generalizes.

Syntactic sugar

Definition (Syntactic sugar)

Programming language construct, which *can be removed* from the language without any effect on:

- functionality
- expressive power

Why do we need sugar?

To make language *sweeter* for humans. Can e.g.

- improve readability
- be more concise
- more natural to some

Sugar I – functions

- binary arithmetic operators (+, -, *, ...) in *infix* notation $4 + 5 \implies + 45 \implies plus 45$
- comparison operators (<, \leq , =, \neq , . . .) in *infix* notation $4 < 5 \implies < 45$
- if-then-else

if p then x else $y \implies ite p x y$

Sugar II – local declarations

let
$$x = M$$
 in $N \implies (\lambda x.N)M$

recursive declarations

letrec
$$x = M$$
 in $N \implies (\lambda x.N) (\mathbf{Y} \ \lambda x.M)$

example:

in f 5

is desugared to

$$(\lambda f.f \; 5) \; ({\pmb{Y}} \; \lambda f. \lambda n. \, {\rm if} \; (= \; n \; 1) 1 (* \; n \; (f \; (- \; n \; 1))))$$

Sugar III – function declarations

 $let f x_1 \dots x_n = M in N$ $\implies let f \lambda x_1 \dots \lambda x_n M in N$ $\implies (\lambda f.N)(x_1 \dots \lambda x_n.M)$

and similarly

letrec $f x_1 \dots x_n = M$ in N \implies letrec $f \lambda x_1 \dots \lambda x_n M$ in N