IA014: Advanced Functional Programming

5. Type Classes

Jan Obdržálek obdrzalek@fi.muni.cz
Faculty of Informatics, Masaryk University, Brno

Polymorphism III

Polymorphism - recap

Types of polymorphism

- parametric polymorphism
- "all types"
- Allows single piece of code to be typed parametrically, i.e. using type variables, and instantiated when needed.
- All instances behave the same.
- HM type system
- ad-hoc polymorphism
- "some types"
- overloading: one function has many implementations (differing by the types of the arguments)
- May behave differently for different types of arguments.

Goal: To extend System HM with overloading

Motivation

- parametric functions work for any type
- but not all similar functions are parametric:
- member :: [a] -> a -> Bool makes sense only if a can be tested for equality
- sort :: [a] -> [a] makes sense only if a can be tested for ordering
- sumOfSquares :: [a] -> a makes sense only if a supports arithmetic operations

Overloading arithmetic

Two approaches:
(1) operations are overloaded, but not user defined functions

- $3 * 3$:: Int, $3.14 * 3.14$:: Float
- however square $x=x * x$:: Int -> Int
square $3.14 * 3.14$ is illegal
- used by StandardML
(2) different function for each input type
- square $x=x * x$ defines two versions one Int -> Int and one Float -> Float
- but consider:
squares(x,y,z) = (square x, square y, square z)
- 8 different versions!

Overloading equality

Three approaches:
(1) equality can be overloaded on any monotype that admits equality (i.e. not function type!)

- problem: cannot define

```
member [] x = False;
member (y:ys) x | x==y = True
    | otherwise = member ys x
```

- original StandARDML
(2) make equality fully polymorphic
- (==) :: a -> a -> Bool
- problem: run-time error if applied to functions
(3) polymorphic in limited way
- (==) :: "a -> "a -> Bool
- "a - type that admits equality (eqtype)
- StandardML

Solution: Type Classes

- allow users to define overloaded functions square, squares, member
- generalize eqtypes of SML to arbitrary types
- no exponential blowup in the number of versions
- there is nothing special about equality and arithmetic user can define new collections of overloaded functions
- type inference works
- can be translated to System HM

Type Classes

Type classes by example: Num

class Num a where

```
(+), (*) :: a -> a -> a
negate:: a -> a
```

instance Num Int where
$(+)=$ addInt
$(*)=$ mulInt
negate $=$ negInt
instance Num Float where
(+) = addFloat
(*) = mulFloat
negate $=$ negFloat
square:: Num a => a -> a
square $\mathrm{x}=\mathrm{x} * \mathrm{x}$

Type classes lingo

type class declaration

class Num a where
(+), (*) :: a -> a -> a
negate:: a -> a

- defines a new class Num with three operations

instance declaration

instance Num Int where
(+) = addInt
(*) = mulInt
negate $=$ negInt

- starts by assertion "Int is an instance of Num"
- justifies the assertion by giving the function definitions

Implementing a type class

```
data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a)
add (NumDict a m n) = a
mul (NumDict a m n) = m
neg (NumDict a m n) = n
numDInt :: NumD Int
numDInt = NumDict addInt mulInt negInt
numDFloat :: NumD Float
numDFloat = NumDict addFloat mulFloat negFloat
square' :: NumD a -> a -> a
square' numDa x = mul numDa x x
```


Translation described

- for each class we introduce
- new type ("method dictionary") data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a)
- NumD is a type constructor
- NumDict is a value constructor
- methods to access this dictionary add (NumDict a m n) = a
- each class instance
- is translated to a value of the "dictionary type" numDInt = NumDict addInt mulint negInt
- each term
- is replaced by the corresponding "access method" term $3.14+3.14 \longrightarrow$ add numDFloat 3.143 .14
- similarly for defined functions
square $3 \longrightarrow$ square' numDInt 3

Functions with multiple dictionaries

definition

squares :: (Num a, Num b, Num c) => (a, b, c)-> (a, b, c)
squares $(x, y, z)=($ square x, square $y, ~ s q u a r e ~ z) ~$

- parameters of class Num
- completely natural syntax

translation

squares' :: (NumD $a, \operatorname{NumD~b,~NumD~c)~->~(a,b,c)~->~(a,b,c)~}$
squares' (numDa, numDb, numDc) (x, y, z) =
(square' numDa x, square' numDb y, square' numDc z)

- succinct: we need just one version of the function, not eight

Type Classes by example: Eq

```
class Eq a where
    (==) :: a -> a -> Bool
instance Eq Int where
    (==) = eqInt
instance Eq Char where
    (==) = eqChar
member :: Eq a => [a] -> a -> Bool
member [] y = False
member (x:xs) \(y=(x==y) \|\) member \(x s y\)
translation
data EqD a = EqDict (a -> a -> Bool)
eq (EqDict e) \(=\) e
eqDInt : : EqD Int
eqDInt \(=\) EqDict eqInt
eqDChar : : EqD Char
eqDChar \(=\) EqDict eqChar
member' :: EqD a -> [a] -> a -> Bool
member' eqDa [] y = False
member' eqDa (x:xs) y = eq eqDa \(x\) y \|| member' eqDa xs y
```


Subclasses

For testing membership of a square, we need both equality and arithmetic:
memsq :: (Eq a, Num a) => [a] -> a -> Bool
memsq xs $x=$ member $x s$ (square x)

- natural assumption: every datatype having (+), (*) and negate defined has also (==) defined
- i.e. Num is a subclass of Eq
class Eq a => Num a where
$\begin{array}{lll}(+) & :: ~ a ~ & -> \\ (*) & :: ~ a ~ & -> \\ \text { negate } & \text { a } \\ \text { ne } & \text { a }\end{array}$
We then can write just
memsq :: Num a => [a] -> a -> Bool
Restriction: no cyclic dependency

Haskell Class Hierarchy

Numeric literals

What is the type of 3 ?

- can be e.g. Integer or Float
- ML: Integer
- HASKELL: Num!

Literals as type classes

```
class (Eq a, Show a) => Num a where
    (+), (-), (*) :: a -> a -> a
    negate :: a -> a
    abs, signum :: a -> a
    fromInteger :: Integer -> a
```

Even literals are overloaded:

```
Prelude> :t 1
1 :: Num a => a
inc :: Num a => a -> a
inc x = x + 1
```


Numeric classes in Haskell

```
class (Num a, Ord a) => Real a where
    toRational :: a -> Rational
class (Real a, Enum a) => Integral a where
        quot, rem, div, mod :: a -> a -> a
        quotRem, divMod :: a -> a -> (a,a)
        toInteger :: a -> Integer
class (Num a) => Fractional a where
        (/) :: a -> a -> a
        recip :: a -> a
    fromRational :: Rational -> a
class (Fractional a) => Floating a where
    pi :: a
    exp, log, sqrt :: a -> a
    (**), logBase :: a -> a -> a
    sin, cos, tan :: a -> a
    asin, acos, atan :: a -> a
    sinh, cosh, tanh :: a -> a
IA014 aşinh,yype',lassesh, atanh :: a -> a
```


Extending Eq

class Eq a where
(==) :: a -> a -> Bool
instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y \&\& xs == ys
_xs == _ys = False
instance Eq Integer where
(==) = eqInteger
instance (Eq a, Eq b) => Eq(a,b) where
$(u, v)==(x, y)=(u==x) \& \&(v==y)$

Default implementation

In the class declaration we can define default implementation for methods:
From GHC.Classes
-- | The 'Eq' class defines equality ('==') and inequality ('/=').
-- All the basic datatypes exported by the "Prelude" are instances of
-- and 'Eq' may be derived for any datatype whose constituents are al
-- instances of 'Eq'.
-- Minimal complete definition: either '==' or '/='.
class Eq a where

$$
\begin{array}{ll}
(==),(/=) & :: a->a->\text { Bool } \\
x /=y & =\operatorname{not}(x==y) \\
x==y & =\operatorname{not}(x /=y)
\end{array}
$$

Instances can redefine the behaviour.

Deriving

For Eq, Ord, Enum, Bounded, Show, or Read, the compiler can generate instance declarations automatically:

```
data Tree a = Leaf a | Branch (Tree a) (Tree a)
    deriving (Eq, Ord)
instance (Eq a) => Eq (Tree a) where
    (Leaf x) == (Leaf y) = x == y
    (Branch l r) == (Branch l' r') = l == l' && r == r'
    == _ = False
instance (Ord a) => Ord (Tree a) where
    (Leaf _) <= (Branch _) = True
    (Leaf x) <= (Leaf y) = x <= y
    (Branch _) <= (Leaf _) = False
    (Branch l r) <= (Branch l' r') = l == l' && r <= r' || l <= l'
```


Qualified types

Qualified types

polymorphic types:

$\forall \alpha . f(\alpha)$ can be treated as having any of the types in the set

$$
\{f(\mathrm{~T}) \mid \mathrm{T} \text { is a type }\}
$$

Restricting polymorphism:

- allow only some of the types
- e.g. those satisfying a predicate π
- we write $\forall \alpha . \pi(\alpha) \Rightarrow f(\alpha)$ for the set
$\{f(\mathrm{~T}) \mid \mathrm{T}$ is a type $\wedge \pi(\mathrm{T})$ holds $\}$

qualified types

- types of the form $\pi \Rightarrow \mathrm{S}$

Entailing relation

- each type system is given by the choice of predicates π
- properties are described by the entailment relation $\Vdash \vdash$ between finite sets of predicates P and Q
- predicates are of the form $\pi=p \mathrm{~T}_{1} \ldots \mathrm{~T}_{n}$, where p is a n-ary predicate symbol and T_{i} types
- the relation \Vdash must satisfy the following properties:
- monotonicity: $P \Vdash Q^{\prime}$ whenerver $P \supseteq Q$
- transitivity: if $P \Vdash Q$ and $Q \Vdash R$, then $P \Vdash R$
- closure: if $P \Vdash Q$ then also $\theta P \Vdash \theta Q$ for any substitution θ
- we write $P \Vdash \pi$ for $P \Vdash\{\pi\}$, and P, π for $P \cup\{\pi\}$

Type classes as qualified types

- predicates: C T
- meaning: T is an instance of the class named C
- additional axioms (examples of):
- $\emptyset \Vdash E q$ Int
- $E q a \Vdash E q[a]$
- typing rules
$\frac{P \Vdash \pi \quad \text { class } Q \Rightarrow \pi}{P \Vdash Q}$ (super) $\frac{P \Vdash Q \quad \text { instance } Q \Rightarrow \pi}{P \Vdash \pi}$ (inst)
- example

$$
\frac{\text { Ord a } \Vdash \text { Ord a class Eq a } \Rightarrow \text { Ord a }}{\text { Ord a } \Vdash \text { Eq a }} \text { (super) }
$$

Validity of class hierarchy

$\frac{\text { class } Q \Rightarrow \pi \quad P \Vdash \theta Q}{\text { instance } P \Rightarrow \theta \pi \text { is valid }}$ (valid)

example

class (Eq a, Show a) => Num a
class Foo a => Bar a
class Foo a
instance (Eq a, Show a) => Foo [a]
instance Num a => Bar [a]

$$
\frac{\text { c Foo } a=>\text { Bar a }}{\frac{1}{\text { Num a } \Vdash \text { Foo [a] }}} \text { i Num a }=>\text { Bar [a] is valid }
$$

$\frac{\mathbf{c}(\text { Eq a, Show a) }=>\text { Num } a}{\text { Num a } \Vdash(\text { Eq a, Show a) }}$ (class)

$$
\mathbf{i}(\text { Eq a, Show a) => Foo [a] }
$$

$$
\text { Num a } \Vdash \text { Foo [a] }
$$

Extending HM with qualified types

type syntax

$$
\begin{aligned}
\mathrm{T}::=\alpha \mid \mathrm{T} \rightarrow \mathrm{~T} \\
\mathrm{R}::=P \Rightarrow \mathrm{~T} \\
\mathrm{~S}::=\forall \vec{\alpha} \cdot \mathrm{R}
\end{aligned}
$$

monotypes
qualified types
type schemes

typing rules

- of the form $P \mid \Gamma \vdash \mathrm{t}: \mathrm{T}$
- meaning: assuming predicates in P and context Γ, t is of type T

$$
\begin{gathered}
P \mid \Gamma \vdash \mathrm{t}: \pi \Rightarrow \mathrm{R} \quad P \Vdash \pi \\
P \mid \Gamma \vdash \mathrm{t}: \mathrm{R} \\
\frac{P, \pi \mid \Gamma \vdash \mathrm{t}: \mathrm{R}}{P \mid \Gamma \vdash \mathrm{t}: \pi \Rightarrow \mathrm{R}} \text { (T-PRed) }
\end{gathered}
$$

Modified HM Typing rules

$$
\begin{aligned}
& \frac{x: \mathrm{S} \in \Gamma}{P \mid \Gamma \vdash x: \mathrm{S}} \text { (T-Var) } \\
& \frac{P \mid \Gamma, x: \mathrm{T}_{1} \vdash \mathrm{t}: \mathrm{T}_{2}}{P \mid \Gamma \vdash \lambda x . \mathrm{t}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \text { (T-Abs) } \\
& \frac{P\left|\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \quad P\right| \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{1}}{P \mid \Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{2}} \text { (T-App) } \\
& \frac{P\left|\Gamma \vdash \mathrm{t}_{1}: \mathrm{S} \quad Q\right| \Gamma, x: \mathrm{S} \vdash \mathrm{t}_{2}: \mathrm{T}}{P \cup Q \mid \Gamma \vdash \text { let } x=\mathrm{t}_{1} \text { in } \mathrm{t}_{2}: \mathrm{T}} \text { (T-Let) } \\
& \frac{P \mid \Gamma \vdash \mathrm{t}: \mathrm{S}^{\prime} \quad \mathrm{S}^{\prime} \sqsubseteq \mathrm{S}}{P \mid \Gamma \vdash \mathrm{t}: \mathrm{S}} \text { (T-Inst) } \\
& \frac{P \mid \Gamma \vdash \mathrm{t}: \mathrm{S} \quad \alpha \notin F V(\Gamma) \cup F V(P)}{P \mid \Gamma \vdash \mathrm{t}: \forall \alpha . \mathrm{S}} \text { (T-Gen) }
\end{aligned}
$$

Type inference

- by combining the rules we can again produce syntax-directed type system (in the same way as for HM)
- we extend Algorithm W in the same fashion

example

```
example x [] = False;
example x (y:ys) | y > x = True
otherwise = (y == x && ys == [x])
```

- the type is T = a -> [a] -> Bool
- constraints: $\mathrm{Q}=\{0 \mathrm{rd}$ a, Eq a, Eq [a]\}
- Ord a: from y > x
- Eq a: from y == x
- Eq [a]: from ys == [x]

Type inference II

The set $\mathrm{Q}=\{0 \mathrm{rd} \mathrm{a}, \mathrm{Eq} \mathrm{a}, \mathrm{Eq}$ [a] $\}$ can be simplified:

- using instance declaration instance Eq a => Eq [a] \{Eq a, Eq [a]\} simplifies to \{Eq a\}
- using class declaration class Eq a => Ord a \{Eq a, Ord a\} simplifies to \{Ord a\}
- therefore \{Ord a, Eq a, Eq [a]\} simplifies to \{0rd a\}

The resulting type is $Q \Rightarrow P$, where

- T = a -> [a] -> Bool
- $Q=\{0 r d$ a\}

Therefore

```
example :: Ord a => a -> [a] -> Bool
example x [] = False;
example x (y:ys) | y > x = True
                                otherwise = (y == x && ys == [x])
```


Detecting errors

Prelude> 'a' + 1
<interactive>:18:5:
No instance for (Num Char) arising from a use of '+' Possible fix: add an instance declaration for (Num Char) In the expression: 'a' + 1 In an equation for 'it': it = 'a' + 1

Type class extensions

- constructor classes
- parametrising class over a type constructor (instead of a type)
- higher-kinded polymorphism
- directly supports monads
- multi-parameter type classes
- functional dependencies

Constructor classes

Overloading map

map on lists

```
map :: (a->b) -> [a] -> [b]
map _ []
map f (x:xs)
    = []
    = f x : map f xs
```

map on Maybe
data Maybe a
= Nothing | Just a
mapMay
:: (a->b) -> Maybe a -> Maybe b
mapMay _ Nothing = Nothing
mapMay f (Just x)
= Just (f x)
map on trees
data Tree a
$=$ Leaf a | Branch (Tree a) (Tree a)
mapTree
:: (a->b) -> Tree a -> Tree b
mapTree f (Leaf x) $=$ Leaf (f x)
mapTree $f($ Branch $x l \times r)=$ Branch (mapTree $f x l$) (mapTree $f x r$)

Comparing maps

- [], Tree and Maybe are type constructors (functions from types to types)
- map, mapTree and mapMay have the "same" type (a->b) -> t a -> t b where t can be [], Tree or Maybe
- the correct map to be applied can be easily determined from the context
e.g. map (1+) [1,2,3] vs. map (1+) (Just 1)

however

- such universal map is not typeable in HM
- there is no way of extending map to other similar structures
type classes do not help
- remember: class Name a where ...
(a is a type here)

Functor class

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
instance Functor [] where
    fmap = map
instance Functor Tree where
    fmap f (Leaf x) = Leaf (f x)
    fmap f (Branch xl xr) = Branch (fmap f xl) (fmap f xr)
instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap f (Just a) = Just (f a)
```

constructor classes

- Functor is an example of a constructor class
- parameter of Functor is a type constructor, not a type

Kinding

Can Functor be applied to any type?

- for Functor Int we would get
fmap :: (a->b) -> Int a -> Int b
- obviously ill-formed, does not "typecheck"

Kinds ("types of types")

- monomorphic types have kind *
- unary type constructor, which takes a type of kind κ_{1} and returns a type of kind κ_{2} has kind $\kappa_{1}->\kappa_{2}$.
- examples:

Int, Float	$:: *$
List, Maybe	$:: *->*$
$(->),()$,	$:: *->* * *$

Kinds: examples

Kinds

(Taken from [Pierce].)

Implementing constructor classes

For each kind κ we have a collection of constructors C^{κ}

$C^{\kappa}::=$	χ^{κ}		constants
	\mid	α^{κ}	
		$C^{\kappa_{1} \rightarrow \kappa_{2}} C^{\kappa_{1}}$	
	variables		
		applications	

Extending HM

Surprisingly straightforward:

$$
\begin{gathered}
\frac{P \mid \Gamma \vdash \mathrm{t}: \forall \alpha^{\kappa} \cdot \mathrm{S} \quad C \in C^{\kappa}}{P \mid \Gamma \vdash \mathrm{t}:\left\{C / \alpha^{\kappa}\right\} \mathrm{S}} \text { (T-Inst') } \\
\frac{P \mid \Gamma \vdash \mathrm{t}: \mathrm{S} \quad \alpha^{\kappa} \notin F V(\Gamma) \cup F V(P)}{P \mid \Gamma \vdash \mathrm{t}: \forall \alpha^{\kappa} \cdot \mathrm{S}} \text { (T-Gen) }
\end{gathered}
$$

- kinded unification
- effective type inference

Kind inference

Kind annotations are actually not needed - can be inferred:

- for class definitions:

```
class Functor f where
    fmap \(\quad::(a->b)\)-> f a -> f b
```

 - -> has kind * -> * -> *
 - therefore both a and b must have kind $*$, and
- f must have kind * -> *, therefore
- the type of fmap must be

$$
\forall f^{* \rightarrow *} . \forall a^{*} . \forall b^{*} . \text { Functor } f \Rightarrow(a \rightarrow b) \rightarrow(f a \rightarrow f b)
$$

- for datatype definitions:

```
data tConst al ... am = vConst1 | ... | vConstn
```

- tConst has kind $\kappa_{1} \rightarrow \ldots \kappa_{m} \rightarrow *$, where
- $\kappa_{1}, \ldots, \kappa_{m}$ are the inferred kinds for al, ..., am
- inference is easy thanks to having no kind abstraction

Multiparameter type classes

Motivation

- in HASKELL98, a class can only qualify a single type:
class Eq a where
(==) :: a -> a -> Bool
- however multiple types may be useful

Example: uniform interface to collection types

```
class Collects e s where
    empty :: s
    insert :: e -> s -> s
    member :: e -> s -> Bool
```

some instances

```
instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects e s)
    => Collects e (Array Int s) where ...
```


Collections

Type s is a collection of elements of type e:

```
class Collects e s where
    empty :: s
    insert :: e -> s -> s
    member :: e -> s -> Bool
```


Problems

(1) ambiguity:
empty :: Collects e s => s
(2) dropping empty does not help either:
f x y col = insert x (insert y col)
f :: (Collects a c, Collects b c) => a -> b -> c -> c
$g \mathrm{c}=\mathrm{f}$ True 'a' col
g :: (Collects Bool c, Collects Char c) => c -> c

Constructor class approach

Abstract over the type constructor c:
class Collects e c where
empty : : c e
insert : : e -> c e -> c e
member :: e -> c e -> Bool

- f : : (Collects e c) => e -> e -> c e -> c e
- g is rejected
- works well for lists
c e instantiates to [] e in this case
- for others either impossible (BitSet) or requires tricks:
newtype CharFun e = MkCharFun (e -> Bool) instance Eq e => Collects e CharFun where ...

Functional dependencies

Key idea: s uniquely determines e

class Collects e s | s -> e where

```
empty :: s
insert :: e -> s -> s
member :: e -> s -> Bool
```

- s -> e above is a functional dependency
- some examples:
class C a b where ...
class D a b | a->b where ...
class E a b | a->b, b->a ...
- either of these declarations is fine on its own:
instance D Bool Int where ...
instance D Bool Char where ...
- together they are rejected
- following is not allowed at all:
instance D [a] b where ...

Another example

```
class Mult a b c where
    (*) :: a -> b -> c
```

instance Mult Matrix Matrix Matrix where ...
instance Mult Matrix Vector Vector where ...
m1, m2, m3 :: Matrix
(m1 * m2) * m3 -- type error; type of (m1*m2) is ambiguo
(m1 * m2) :: Matrix * m3 -- this is ok

Solution:

class Mult a b c | (a,b) -> c where
(*) :: a -> b -> c

Type classes over time

- Type classes are the most unusual feature of Haskell's type system

S. Peyton Jones: Wearing the Hair Shirt. A retrospective on Haskell.

Reading list

primary papers

- P. Wadler, S. Blott: How to make ad-hoc polymorphism less ad hoc. POPL'89.
- M. Jones: A theory of qualified types. ESOP'92.
- M. Jones: A system of cnstructor classes. FPCA'93.
- M. Jones: Type Classes with Functional Dependencies. ESOP'00.
further reading
- M. Jones: Functional Programming with Overloading and Higher-Order Polymorphism. AFPT Spring School 1995.
- A History of Haskell: Being Lazy With Class. 2007. (Section 6)
- J. Peterson and M. Jones: Implementing Type Classes. PLDI'93.
- C. Hall, K. Hammond, S. Peyton Jones, P. Wadler: Type classes in Haskell. ESOP'94.

