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Polymorphism — recap

Types of polymorphism
e parametric polymorphism
o “all types”
o Allows single piece of code to be typed parametrically, i.e.
using type variables, and instantiated when needed.
o All instances behave the same.
o HM type system
e ad-hoc polymorphism
o “some types”
e overloading: one function has many implementations
(differing by the types of the arguments)
« May behave differently for different types of arguments.

Goal: To extend System HM with overloading
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Motivation

o parametric functions work for any type
 but not all similar functions are parametric:
e member :: [a] -> a -> Bool
makes sense only if a can be tested for equality
e sort :: [a] -> [a]
makes sense only if a can be tested for ordering
e sumOfSquares :: [a] -> a
makes sense only if a supports arithmetic operations
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Overloading arithmetic

Two approaches:
@ operations are overloaded, but not user defined functions
e 3x3 :: Int, 3.14%x3.14 :: Float
e however square x = xxx :: Int -> Int
square 3.14x3.14is illegal
e used by STANDARDML
@ different function for each input type
e square x = xxx defines two versions
one Int -> Int andone Float -> Float
e but consider:
squares(x,y,z) = (square x, square y, square z)
o 38 different versions!
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Overloading equality

Three approaches:

@ equality can be overloaded on any monotype that admits
equality (i.e. not function type!)
e problem: cannot define
member [] x = False;
member (y:ys) X | x==y = True
| otherwise = member ys x
e original STANDARDML
® make equality fully polymorphic
e (==) :: a ->a -> Bool
e problem: run-time error if applied to functions
@ polymorphic in limited way
° (==) i "a -> "a -> Bool
e "a —type that admits equality (eqtype)
e STANDARDML

IA0O14 5. Type Classes



1A014

Solution: Type Classes

allow users to define overloaded functions square,
squares, member

generalize eqtypes of SML to arbitrary types
no exponential blowup in the number of versions

there is nothing special about equality and arithmetic
user can define new collections of overloaded functions

type inference works
can be translated to System HM
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Type Classes
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Type classes by example:

class Num a where
(#), (¥) :: a ->a ->a
negate:: a -> a

instance Num Int where
(+) = addInt
(*) = mullnt
negate = negInt

instance Num Float where
(+) = addFloat
(*) = mulFloat
negate = negFloat

square:: Num a => a -> a
square X = X *x X
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Type classes lingo

type class declaration

class Num a where
(#), (¥) ::a ->a ->a
negate:: a -> a

 defines a new class Num with three operations

instance declaration

instance Num Int where
(+) = addInt
(*) = mullnt
negate = negInt

« starts by assertion “Int is an instance of Num”
« justifies the assertion by giving the function definitions
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Implementing a type class

data NumD a = NumDict
add (NumDict a m n)
mul (NumDict a m n)
neg (NumDict a m n)

a->a->a) (a ->a ->a) (a ->a)

I
S5 3 0 ~

numDInt :: NumD Int
numDInt = NumDict addInt mulInt negInt

numDFloat :: NumD Float
numDFloat = NumDict addFloat mulFloat negFloat

square’ :: NumD a -> a -> a
square’ numDa x = mul numDa x X
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Translation described

for each class we introduce

e new type (“method dictionary”)
data NumD a = NumDict (a -> a -> a) (a -> a -> a)

e NumD is a fype constructor
e NumDict is a value constructor

» methods to access this dictionary
add (NumDict a m n) = a
each class instance

e is translated to a value of the “dictionary type”
numDInt =

each term

e is replaced by the corresponding “access method” term

NumDict addInt mulInt neglInt

3.14 + 3.14 — add numDFloat 3.14 3.14

similarly for defined functions

square 3
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Functions with multiple dictionaries

definition
squares :: (Num a, Num b, Num c) => (a,b,c) -> (a,b,c)
squares (x, y, z) = (square x, square y, square z)

e parameters of class Num
e completely natural syntax

translation

squares’ :: (NumD a, NumD b, NumD c) -> (a,b,c) -> (a,b,c)
squares’ (numDa, numDb, numDc) (x, y, z) =
(square’ numDa x, square’ numDb y, square’ numDc z)

e succinct: we need just one version of the function, not eight
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Type Classes by example: Eq

class Eg a where
==) :: a -> a -> Bool
instance Eq Int where

==) = eqlnt

instance Eq Char where

(==) = eqChar

member
member [] vy
member (Xx:xs) y

translation
data EqD a

€q

(EqDict e)

egDInt

eqDInt

egDChar

egDChar

member’

member’ egDa []
member’ eqgDa (x:

1A014
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:: Eq a => [a] -> a -> Bool

Fal
(x

e

se

y) || member xs y

EqgDict (a -> a -> Bool)

: EqD Int

EqDict eqInt

:: EgD Char

EqDict eqChar

:: EgD a -> [a] -> a -> Bool

y
Xs) y

False
eq eqDa x y || member’ egDa xs y



Subclasses

For testing membership of a square, we need both equality and
arithmetic:
memsq :: (Eq a, Num a) => [a] -> a -> Bool

memsq Xs X = member xs (square x)

e natural assumption: every datatype having (+), (*) and
negate defined has also (==) defined

e i.e. Numis a subclass of Eq

class Eq a => Num a where

(+) ira ->a ->a
(*) ta->a->a
negate :: a -> a

We then can write just

memsq :: Num a => [a] -> a -> Bool

Restriction: no cyclic dependency
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Haskell Class Hierarchy

Eq
All except
10, (->)

Read
All except
10, (=)

Bounded
Int, Char, Boal, ()
Ordering,tuple:

Num
Int, Integer,
Float, Double

ord
All except 10,
10Error, (->)

Enum
(), Bool, Char, Qrdering)
Int, Integer, Float,
Double

Real .
Int, Integer, FIFratl:':[l)bngll
Float, Double, oat, Double

Fleating
Float, Double

RealFrac
Float, Double

Integral
Int, Integer

RealFloat

paonad Float, Double

10, [, Maybe

Functor
10, [1. Maybe

MonadPlus
10, [1, Maybe



Numeric literals

What is the type of 3?
e can be e.g. Integer Of Float
e ML: Integer
e HASKELL: Num!

Literals as type classes

class (Eq a, Show a) => Num a where

(+), (-), () ::a->a->a
negate rra ->a
abs, signum v a ->a
fromInteger :: Integer -> a

Even literals are overloaded:
Prelude> :t 1

1 :: Numa => a

inc :: Num a => a -> a

inc x = x + 1
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Numeric classes in Haskell

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where

quot, rem, div, mod :: a -> a -> a
quotRem, divMod ra ->a -> (a,a)
toInteger i1 a -> Integer

class (Num a) => Fractional a where

(/) :ra->a ->a
recip it a ->a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
pi HE-

exp, log, sqrt a ->a
(*xx), logBase a ->a ->a
sin, cos, tan 1 a ->a
asin, acos, atan ta->a
sinh, cosh, tanh a ->a

a a

o014 8$1ph, jacosh, atanh :: a ->



Extending Eq

class Egq a where
==) :: a -> a -> Bool

instance (Eq a) => Eq [a] where

[1 == [] = True
(x:xs) == (y:ys) = x ==y & Xxs == ys
_XS == _ys = False

instance Eq Integer where
(==) = eqInteger

instance (Eq a, Egq b) => Eq(a,b) where
(u,v) == (x,y) = (u == x) && (v ==y)
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Default implementation

In the class declaration we can define default implementation
for methods:
From GHC.Classes

-- | The "EqQ’ class defines equality (’'==") and inequality ('/=").

-- All the basic datatypes exported by the "Prelude" are instances of
-- and 'Eq’ may be derived for any datatype whose constituents are al
-- instances of 'Eq’.

’ ’

-- Minimal complete definition: either ’'==' or '/=".

class Eq a where

(=), (/=) i a ->a -> Bool
X /=y = not (x ==y)
=y = not (x /=y)

Instances can redefine the behaviour.
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Deriving

For Eq, Ord, Enum, Bounded, Show, or Read, the compiler can
generate instance declarations automatically:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq, Ord)

instance (Eq a) => Eq (Tree a) where

(Leaf x) == (Leaf y) = X =y
(Branch 1 r) == (Branch 1" r') = 1l =1 &&r =r'
_ == _ = False

instance (0rd a) => Ord (Tree a) where

(Leaf _) <= (Branch _) = True

(Leaf x) <= (Leaf y) = X <=y

(Branch _) <= (Leaf _) = False

(Branch 1 r) <= (Branch 1" r’) = 1l =1 & r<=r" || L <=1’
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Qualified types

polymorphic types:
V. f(a) can be treated as having any of the types in the set

{f(T)| Tis atype}

Restricting polymorphism:

o allow only some of the types
¢ e.g. those satisfying a predicate =
o we write Va.m(«) = f(«) for the set

{f(T) | Tisatype A n(T) holds}

qualified types
o types of the form = = S

IA0O14 5. Type Classes
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Entailing relation

each type system is given by the choice of predicates =
properties are described by the entailment relation I+
between finite sets of predicates P and

predicates are of the form = = pT;...T,, where pis a
n-ary predicate symbol and T; types

the relation I must satisfy the following properties:

e monotonicity: P I Q' whenerver P D )
e transitivity: if PIFQand Q I- R, then PIF R
e closure: if P I @Q then also 6P I 6Q) for any substitution 0

we write P Ik 7 for P IF {=}, and P, 7 for P U {r}

5. Type Classes
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Type classes as qualified types

e predicates: C T
e meaning: T is an instance of the class named C
« additional axioms (examples of):
e OIF Eq Int
e Eqalr Eq [a]
e typing rules
PlFn - |cF:Iast Q= (super) PlFQ Pln‘it:nce Q=
e example
Ord al-0rd a class Eq a=0rd a
Ord alFEq a

(inst)

(super)

IA0O14 5. Type Classes
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Validity of class hierarchy

class Q = PIF0Q
instance P = Or is valid

(valid)

example

class (Eq a, Show a) => Num a
class Foo a => Bar a

class Foo a

instance (Eq a, Show a) => Foo [a]
instance Num a => Bar [a]

c Foo a => Bar a Num alF Foo [a]
i Num a => Bar [a] is valid

(valid)

¢ (Eq a, Show a) => Num a
Num alF (Eq a, Show a)

(class) i (Eq a, Show a) => Foo [a]

Num alF Foo [a]
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Extending HM with qualified types

type syntax

Ti= a|T—>T monotypes
Ru= P=T qualified types
S:= Va.R type schemes

typing rules
e oftheform P |T'Ht:T

e meaning: assuming predicates in P and context I', t is of type T

P|ITFt:m=R Pl-n
P|ITHt:R
Prn|TFt:R
P|ITHt:m=R

(T-PRed)

(T-Pint)
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Modified HM Typing rules

r:Sel
PITras:s (Van

P|T,z:TiFt:Ty
P|TFAet: Ty — Ty
P|F|‘t12T1—)T2 P|F|‘t22T1

(T-Abs)

T-A
P|P|—t1t22T2 ( pp)
P|THFHt:S Q|F,x.:S|—t2:T (T-Let)
PUQ|THlet x=t; in to: T
. A I|:
PITre:8  SES oo
P|TkFt:S
PITrt:S  ag¢ Fv(D)|UEVB)N (T-Gen)
PITFt:vasS

IA0O14 5. Type Classes
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Type inference

» by combining the rules we can again produce
syntax-directed type system (in the same way as for HM)

o we extend Algorithm W in the same fashion

example
example x [] = False;
example x (y:ys) | y > x = True

| otherwise = (y == x && ys == [x])

e thetypeisT = a -> [a] -> Bool

e constraints: Q = {0Ord a, Eq a, Eq [a]}
e Ord a:fromy > x
e Eq a:fromy == x
e Eq [a]: fromys == [x]

IA0O14 5. Type Classes 29



Type inference |l

The setQ = {0rd a, Eq a, Eq [al} can be simplified:

e using instance declaration instance Eq a => Eq [a]
{Eq a, Eq [a]} simplifiesto {Eq a}

e using class declaration class Eq a => 0Ord a
{Eq a, Ord a} simplifies to {Ord a}

e therefore {Ord a, Eq a, Eq [al} simplifiesto {Ord a}
The resulting type is Q = P, where

e T =a -> [a] -> Bool

e Q = {Ord a}
Therefore
example :: Ord a => a -> [a] -> Bool

example x [] = False;
example x (y:ys) | y > x = True
| otherwise = (y == x & ys == [x])
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Detecting errors

1o

Prelude> 'a’ + 1

<interactive>:18:5:
No instance for (Num Char) arising from a use of ‘+
Possible fix: add an instance declaration for (Num Char)
In the expression: 'a’ + 1

In an equation for ‘it’: it = 'a’" + 1

(4

IA0O14 5. Type Classes 31



Type class extensions

constructor classes
e parametrising class over a type constructor (instead of a

type)
» higher-kinded polymorphism
o directly supports monads

multi-parameter type classes

functional dependencies
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Constructor classes
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Overloading map

map on lists

map i (a->b) -> [a] -> [b]
map _ [] = [

map f (x:xs) = f x : map f xs

map on Maybe

data Maybe a Nothing | Just a

mapMay :: (a->b) -> Maybe a -> Maybe b
mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)

map on trees

data Tree a Leaf a | Branch (Tree a) (Tree a)
mapTree i (a->b) -> Tree a -> Tree b

mapTree f (Leaf x) Leaf (f x)

mapTree f (Branch x1 xr) = Branch (mapTree f x1) (mapTree f xr)
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Comparing maps

e [], Tree and Maybe are type constructors
(functions from types to types)
e map, mapTree and mapMay have the “same” type
(a->b) ->ta->thb
where t can be [1, Tree or Maybe
o the correct map to be applied can be easily determined

from the context
e.g.map (1+) [1,2,3]vs.map (1+) (Just 1)

however

« such universal map is not typeable in HM

« there is no way of extending map to other similar structures
type classes do not help

e remember: class Name a where ...
(ais a type here)
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Functor class

class Functor f where
fmap 't (@ ->b) >fa->fhb

instance Functor [] where
fmap = map

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch x1 xr) = Branch (fmap f xl) (fmap f xr)

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) Just (f a)

constructor classes
e Functor is an example of a constructor class
» parameter of Functor is a type constructor, not a type
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Kinding

Can Functor be applied to any type?

e for Functor Int we would get
fmap :: (a->b) -> Int a -> Int b

» obviously ill-formed, does not “typecheck”

Kinds (“types of types”)
e monomorphic types have kind *

» unary type constructor, which takes a type of kind ~; and
returns a type of kind x5 has kind k1 -> ko.

e examples:

Int, Float
List, Maybe
(->), (,) ok o> ok o> %
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Kinds: examples

Kinds
¥ Y ¥ [N N )
b Types
- j ~
Nat \ Pair Nat Bool Pair
(AX.X—X) Nat AX. X=X
\ \Nat—»Nat vX. X=X Pair Nat Pair Pair
N N J
\ \ ‘-. Terms
[ v > N
5 Ax:Nat.x =
XA (Ax:Nat.x) true
X.Ax:X.x
(Ax:Nat.x) 5 pair [Nat] [Bool] 5 false

(Taken from [Pierce].)
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Implementing constructor classes

For each kind x we have a collection of constructors C*

Cra= X" constants
| af variables
| CmrReCm applications

Extending HM
Surprisingly straightforward:

P|T+t:vigms  |CIEIGE
P|T++: [fOJa=Ps

(T-Inst’)

P|ITHt:S @8 ¢ FV (D) UFV(P)
P|T+t:vjasls

(T-Gen)

« kinded unification
« effective type inference
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Kind inference

Kind annotations are actually not needed — can be inferred:

o for class definitions:

class Functor f where

fmap it (@ ->b) >fa->Ffhb
->haskind x -> *x -> x

therefore both a and b must have kind *, and

f must have kind = -> x, therefore
the type of fmap must be

Vf*7* Ya* Yb* . Functorf = (a = b) — (fa — f D)

« for datatype definitions:
data tConst al ... am = vConstl | ... | vConstn

e tConst haskind x; — ...k, — *, where
® Ki,...,Kn, are the inferred kinds foral, ..., am

e inference is easy thanks to having no kind abstraction

IA0O14 5. Type Classes
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Multiparameter type classes
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Motivation

e in HASKELL98, a class can only qualify a single type:

class Egq a where
==) :: a ->a -> Bool

¢ however multiple types may be useful

Example: uniform interface to collection types

class Collects e s where

empty 38 8
insert :: e ->s ->s
member :: e -> s -> Bool

some instances

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects e s)

=> Collects e (Array Int s) where ...

IA0O14 5. Type Classes

42



Collections

Type s is a collection of elements of type e:

class Collects e s where

empty 1S
insert :: e ->s ->s
member :: e -> s -> Bool
Problems
© ambiguity:
empty :: Collects e s => s

® dropping empty does not help either:

1A014

f

f o

g
g ::

x y col = insert x (insert y col)
(Collects a c, Collects bc) =>a ->b ->c -> ¢

’

c =1f True "a’ col
(Collects Bool c, Collects Char c) =>c -> c

5. Type Classes
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Constructor class approach

Abstract over the type constructor c:

class Collects e c where

empty 1t ce

insert :: e ->ce ->ce

member :: e -> c e -> Bool

e f :: (Collects ec) =>e ->e ->ce ->cCe

g is rejected

works well for lists
c e instantiatesto [] e in this case

for others either impossible (BitSet) or requires tricks:

newtype CharFun e = MkCharFun (e -> Bool)
instance Eq e => Collects e CharFun where ...

IA0O14 5. Type Classes
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Functional dependencies

Key idea: s uniquely determines e

class Collects e s | s -> e where

empty HHE
insert :: e ->s ->s
member :: e -> s -> Bool

1A014

s -> e above is a functional dependency
some examples:

class C a b where ...

class D a b | a->b where ...

class Eab | a->b, b->a ...

either of these declarations is fine on its own:

instance D Bool Int where ...
instance D Bool Char where ...

together they are rejected
following is not allowed at all:

instance D [a] b where ...

5. Type Classes
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Another example

class Mult a b ¢ where
(¥) ::a ->b ->c

instance Mult Matrix Matrix
instance Mult Matrix Vector

ml, m2, m3 :: Matrix

(ml x m2) * m3

(ml * m2) :: Matrix x m3

Solution:

class Mult a b c | (a,b) ->
(¥) ::a ->b ->c

IA0O14 5. Type Classes

Matrix where ...
Vector where ...

-- type error; type of (mlxm2) is ambiguo
-- this is ok

c where
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Type classes over time

* Type classes are the most unusual
feature of Haskell's type system

Hey, what's
the big
deal?

Wild enthusiasm

Incomprehension

Despair Hack,
hack,
hack

ﬁvww 1989 . 1993 1997

S. Peyton Jones: Wearing the Hair Shirt. A retrospective on Haskell.
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Reading list

primary papers

e P. Wadler, S. Blott: How to make ad-hoc polymorphism less ad
hoc. POPL89.

e M. Jones: A theory of qualified types. ESOP’92.
e M. Jones: A system of cnstructor classes. FPCA’93.

e M. Jones: Type Classes with Functional Dependencies.
ESOP’00.

further reading

e M. Jones: Functional Programming with Overloading and
Higher-Order Polymorphism. AFPT Spring School 1995.

e A History of Haskell: Being Lazy With Class. 2007. (Section 6)
e J. Peterson and M. Jones: /Implementing Type Classes. PLDI'93.

e C. Hall, K. Hammond, S. Peyton Jones, P. Wadler: Type classes
in Haskell. ESOP’94.
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