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Polymorphism – recap

Types of polymorphism
• parametric polymorphism

• “all types”
• Allows single piece of code to be typed parametrically, i.e.

using type variables, and instantiated when needed.
• All instances behave the same.
• HM type system

• ad-hoc polymorphism
• “some types”
• overloading: one function has many implementations

(differing by the types of the arguments)
• May behave differently for different types of arguments.

Goal: To extend System HM with overloading
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Motivation

• parametric functions work for any type
• but not all similar functions are parametric:

• member :: [a] -> a -> Bool
makes sense only if a can be tested for equality

• sort :: [a] -> [a]
makes sense only if a can be tested for ordering

• sumOfSquares :: [a] -> a
makes sense only if a supports arithmetic operations
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Overloading arithmetic

Two approaches:
1 operations are overloaded, but not user defined functions

• 3*3 :: Int, 3.14*3.14 :: Float
• however square x = x*x :: Int -> Int
square 3.14*3.14 is illegal

• used by STANDARDML
2 different function for each input type

• square x = x*x defines two versions
one Int -> Int and one Float -> Float

• but consider:
squares(x,y,z) = (square x, square y, square z)

• 8 different versions!
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Overloading equality

Three approaches:
1 equality can be overloaded on any monotype that admits

equality (i.e. not function type!)
• problem: cannot define

member [] x = False;
member (y:ys) x | x==y = True

| otherwise = member ys x

• original STANDARDML
2 make equality fully polymorphic

• (==) :: a -> a -> Bool
• problem: run-time error if applied to functions

3 polymorphic in limited way
• (==) :: ”a -> ”a -> Bool
• ”a – type that admits equality (eqtype)
• STANDARDML
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Solution: Type Classes

• allow users to define overloaded functions square,
squares, member

• generalize eqtypes of SML to arbitrary types
• no exponential blowup in the number of versions
• there is nothing special about equality and arithmetic

user can define new collections of overloaded functions
• type inference works
• can be translated to System HM
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Type Classes
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Type classes by example: Num

class Num a where
(+), (*) :: a -> a -> a
negate:: a -> a

instance Num Int where
(+) = addInt
(*) = mulInt
negate = negInt

instance Num Float where
(+) = addFloat
(*) = mulFloat
negate = negFloat

square:: Num a => a -> a
square x = x * x
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Type classes lingo

type class declaration
class Num a where

(+), (*) :: a -> a -> a
negate:: a -> a

• defines a new class Num with three operations

instance declaration
instance Num Int where

(+) = addInt
(*) = mulInt
negate = negInt

• starts by assertion “Int is an instance of Num”
• justifies the assertion by giving the function definitions
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Implementing a type class

data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a)
add (NumDict a m n) = a
mul (NumDict a m n) = m
neg (NumDict a m n) = n

numDInt :: NumD Int
numDInt = NumDict addInt mulInt negInt

numDFloat :: NumD Float
numDFloat = NumDict addFloat mulFloat negFloat

square’ :: NumD a -> a -> a
square’ numDa x = mul numDa x x
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Translation described

• for each class we introduce
• new type (“method dictionary”)

data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a)

• NumD is a type constructor
• NumDict is a value constructor

• methods to access this dictionary
add (NumDict a m n) = a

• each class instance
• is translated to a value of the “dictionary type”

numDInt = NumDict addInt mulInt negInt

• each term
• is replaced by the corresponding “access method” term

3.14 + 3.14 −→ add numDFloat 3.14 3.14

• similarly for defined functions
square 3 −→ square’ numDInt 3
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Functions with multiple dictionaries

definition
squares :: (Num a, Num b, Num c) => (a,b,c) -> (a,b,c)
squares (x, y, z) = (square x, square y, square z)

• parameters of class Num

• completely natural syntax

translation
squares’ :: (NumD a, NumD b, NumD c) -> (a,b,c) -> (a,b,c)
squares’ (numDa, numDb, numDc) (x, y, z) =

(square’ numDa x, square’ numDb y, square’ numDc z)

• succinct: we need just one version of the function, not eight

IA014 5. Type Classes 13



Type Classes by example: Eq

class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where
(==) = eqInt

instance Eq Char where
(==) = eqChar

member :: Eq a => [a] -> a -> Bool
member [] y = False
member (x:xs) y = (x == y) || member xs y

translation

data EqD a = EqDict (a -> a -> Bool)
eq (EqDict e) = e
eqDInt :: EqD Int
eqDInt = EqDict eqInt
eqDChar :: EqD Char
eqDChar = EqDict eqChar
member’ :: EqD a -> [a] -> a -> Bool
member’ eqDa [] y = False
member’ eqDa (x:xs) y = eq eqDa x y || member’ eqDa xs y
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Subclasses

For testing membership of a square, we need both equality and
arithmetic:

memsq :: (Eq a, Num a) => [a] -> a -> Bool
memsq xs x = member xs (square x)

• natural assumption: every datatype having (+), (*) and
negate defined has also (==) defined

• i.e. Num is a subclass of Eq

class Eq a => Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a

We then can write just

memsq :: Num a => [a] -> a -> Bool

Restriction: no cyclic dependency
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Haskell Class Hierarchy
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Numeric literals

What is the type of 3?
• can be e.g. Integer or Float
• ML: Integer
• HASKELL: Num!

Literals as type classes
class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

Even literals are overloaded:
Prelude> :t 1
1 :: Num a => a

inc :: Num a => a -> a
inc x = x + 1
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Numeric classes in Haskell
class (Num a, Ord a) => Real a where

toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a
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Extending Eq

class Eq a where
(==) :: a -> a -> Bool

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_xs == _ys = False

instance Eq Integer where
(==) = eqInteger

instance (Eq a, Eq b) => Eq(a,b) where
(u,v) == (x,y) = (u == x) && (v == y)
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Default implementation

In the class declaration we can define default implementation
for methods:
From GHC.Classes

-- | The ’Eq’ class defines equality (’==’) and inequality (’/=’).
-- All the basic datatypes exported by the "Prelude" are instances of ’Eq’,
-- and ’Eq’ may be derived for any datatype whose constituents are also
-- instances of ’Eq’.
--
-- Minimal complete definition: either ’==’ or ’/=’.
--
class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

Instances can redefine the behaviour.
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Deriving

For Eq, Ord, Enum, Bounded, Show, or Read, the compiler can
generate instance declarations automatically:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Eq, Ord)

instance (Eq a) => Eq (Tree a) where
(Leaf x) == (Leaf y) = x == y
(Branch l r) == (Branch l’ r’) = l == l’ && r == r’
_ == _ = False

instance (Ord a) => Ord (Tree a) where
(Leaf _) <= (Branch _) = True
(Leaf x) <= (Leaf y) = x <= y
(Branch _) <= (Leaf _) = False
(Branch l r) <= (Branch l’ r’) = l == l’ && r <= r’ || l <= l’
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Qualified types
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Qualified types

polymorphic types:
∀α.f(α) can be treated as having any of the types in the set

{f(T) | T is a type}

Restricting polymorphism:

• allow only some of the types
• e.g. those satisfying a predicate π
• we write ∀α.π(α)⇒ f(α) for the set

{f(T) | T is a type ∧ π(T) holds}

qualified types
• types of the form π ⇒ S
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Entailing relation

• each type system is given by the choice of predicates π
• properties are described by the entailment relation 


between finite sets of predicates P and Q
• predicates are of the form π = pT1 . . .Tn, where p is a
n-ary predicate symbol and Ti types

• the relation 
 must satisfy the following properties:
• monotonicity: P 
 Q′ whenerver P ⊇ Q
• transitivity: if P 
 Q and Q 
 R, then P 
 R
• closure: if P 
 Q then also θP 
 θQ for any substitution θ

• we write P 
 π for P 
 {π}, and P, π for P ∪ {π}
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Type classes as qualified types

• predicates: C T

• meaning: T is an instance of the class named C
• additional axioms (examples of):

• ∅ 
 Eq Int
• Eq a 
 Eq [a]

• typing rules
P 
 π class Q⇒ π

P 
 Q
(super)

P 
 Q instance Q⇒ π

P 
 π
(inst)

• example
Ord a 
 Ord a class Eq a⇒ Ord a

Ord a 
 Eq a
(super)
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Validity of class hierarchy
class Q⇒ π P 
 θQ

instance P ⇒ θπ is valid
(valid)

example

class (Eq a, Show a) => Num a
class Foo a => Bar a
class Foo a
instance (Eq a, Show a) => Foo [a]
instance Num a => Bar [a]

c Foo a => Bar a
. . .

Num a 
 Foo [a] (valid)
i Num a => Bar [a] is valid

c (Eq a, Show a) => Num a
(class)

Num a 
 (Eq a, Show a) i (Eq a, Show a) => Foo [a]
(inst)

Num a 
 Foo [a]
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Extending HM with qualified types

type syntax

T ::= α | T→ T monotypes
R ::= P ⇒ T qualified types
S ::= ∀~α.R type schemes

typing rules

• of the form P | Γ ` t : T

• meaning: assuming predicates in P and context Γ, t is of type T

P | Γ ` t : π ⇒ R P 
 π

P | Γ ` t : R
(T-PRed)

P, π | Γ ` t : R

P | Γ ` t : π ⇒ R
(T-PInt)
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Modified HM Typing rules

x : S ∈ Γ
P | Γ ` x : S

(T-Var)

P | Γ, x : T1 ` t : T2

P | Γ ` λx.t : T1 → T2

(T-Abs)

P | Γ ` t1 : T1 → T2 P | Γ ` t2 : T1

P | Γ ` t1 t2 : T2

(T-App)

P | Γ ` t1 : S Q | Γ, x : S ` t2 : T

P ∪Q | Γ ` let x = t1 in t2 : T
(T-Let)

P | Γ ` t : S′ S′ v S

P | Γ ` t : S
(T-Inst)

P | Γ ` t : S α 6∈ FV (Γ) ∪FV (P )

P | Γ ` t : ∀α.S
(T-Gen)
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Type inference

• by combining the rules we can again produce
syntax-directed type system (in the same way as for HM)

• we extend Algorithm W in the same fashion

example
example x [] = False;
example x (y:ys) | y > x = True

| otherwise = (y == x && ys == [x])

• the type is T = a -> [a] -> Bool

• constraints: Q = {Ord a, Eq a, Eq [a]}
• Ord a: from y > x
• Eq a: from y == x
• Eq [a]: from ys == [x]
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Type inference II

The set Q = {Ord a, Eq a, Eq [a]} can be simplified:

• using instance declaration instance Eq a => Eq [a]
{Eq a, Eq [a]} simplifies to {Eq a}

• using class declaration class Eq a => Ord a
{Eq a, Ord a} simplifies to {Ord a}

• therefore {Ord a, Eq a, Eq [a]} simplifies to {Ord a}

The resulting type is Q⇒ P , where

• T = a -> [a] -> Bool

• Q = {Ord a}

Therefore

example :: Ord a => a -> [a] -> Bool
example x [] = False;
example x (y:ys) | y > x = True

| otherwise = (y == x && ys == [x])
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Detecting errors

Prelude> ’a’ + 1

<interactive>:18:5:
No instance for (Num Char) arising from a use of ‘+’
Possible fix: add an instance declaration for (Num Char)
In the expression: ’a’ + 1
In an equation for ‘it’: it = ’a’ + 1
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Type class extensions

• constructor classes
• parametrising class over a type constructor (instead of a

type)
• higher-kinded polymorphism
• directly supports monads

• multi-parameter type classes
• functional dependencies
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Constructor classes
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Overloading map

map on lists
map :: (a->b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

map on Maybe

data Maybe a = Nothing | Just a

mapMay :: (a->b) -> Maybe a -> Maybe b
mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)

map on trees
data Tree a = Leaf a | Branch (Tree a) (Tree a)

mapTree :: (a->b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Branch xl xr) = Branch (mapTree f xl) (mapTree f xr)
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Comparing maps

• [], Tree and Maybe are type constructors
(functions from types to types)

• map, mapTree and mapMay have the “same” type
(a->b) -> t a -> t b

where t can be [], Tree or Maybe

• the correct map to be applied can be easily determined
from the context
e.g. map (1+) [1,2,3] vs. map (1+) (Just 1)

however
• such universal map is not typeable in HM
• there is no way of extending map to other similar structures

type classes do not help
• remember: class Name a where ...

(a is a type here)
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Functor class

class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor [] where
fmap = map

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch xl xr) = Branch (fmap f xl) (fmap f xr)

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

constructor classes
• Functor is an example of a constructor class
• parameter of Functor is a type constructor, not a type
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Kinding

Can Functor be applied to any type?
• for Functor Int we would get
fmap :: (a->b) -> Int a -> Int b

• obviously ill-formed, does not “typecheck”

Kinds (“types of types”)
• monomorphic types have kind *
• unary type constructor, which takes a type of kind κ1 and

returns a type of kind κ2 has kind κ1 -> κ2.
• examples:

Int, Float :: *
List, Maybe :: * -> *
(->), (,) :: * -> * -> *
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Kinds: examples

(Taken from [Pierce].)
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Implementing constructor classes

For each kind κ we have a collection of constructors Cκ

Cκ ::= χκ constants
| ακ variables
| Cκ1→κ2Cκ1 applications

Extending HM
Surprisingly straightforward:

P | Γ ` t : ∀ ακ .S C ∈ Cκ

P | Γ ` t : {C/ακ} S
(T-Inst’)

P | Γ ` t : S ακ 6∈ FV (Γ) ∪ FV (P )

P | Γ ` t : ∀ ακ .S
(T-Gen)

• kinded unification
• effective type inference
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Kind inference

Kind annotations are actually not needed – can be inferred:

• for class definitions:

class Functor f where
fmap :: (a -> b) -> f a -> f b

• -> has kind * -> * -> *
• therefore both a and b must have kind *, and
• f must have kind * -> *, therefore
• the type of fmap must be

∀f∗→∗.∀a∗.∀b∗.Functorf ⇒ (a→ b)→ (f a→ f b)

• for datatype definitions:

data tConst a1 ... am = vConst1 | ... | vConstn

• tConst has kind κ1 → . . . κm → ∗, where
• κ1, . . . , κm are the inferred kinds for a1, ..., am

• inference is easy thanks to having no kind abstraction
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Multiparameter type classes
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Motivation

• in HASKELL98, a class can only qualify a single type:
class Eq a where

(==) :: a -> a -> Bool

• however multiple types may be useful

Example: uniform interface to collection types
class Collects e s where

empty :: s
insert :: e -> s -> s
member :: e -> s -> Bool

some instances
instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects e s)

=> Collects e (Array Int s) where ...
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Collections

Type s is a collection of elements of type e:

class Collects e s where
empty :: s
insert :: e -> s -> s
member :: e -> s -> Bool

Problems
1 ambiguity:

empty :: Collects e s => s

2 dropping empty does not help either:

f x y col = insert x (insert y col)
f :: (Collects a c, Collects b c) => a -> b -> c -> c

g c = f True ’a’ col
g :: (Collects Bool c, Collects Char c) => c -> c
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Constructor class approach

Abstract over the type constructor c:

class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool

• f :: (Collects e c) => e -> e -> c e -> c e

• g is rejected
• works well for lists
c e instantiates to [] e in this case

• for others either impossible (BitSet) or requires tricks:

newtype CharFun e = MkCharFun (e -> Bool)
instance Eq e => Collects e CharFun where ...
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Functional dependencies

Key idea: s uniquely determines e

class Collects e s | s -> e where
empty :: s
insert :: e -> s -> s
member :: e -> s -> Bool

• s -> e above is a functional dependency
• some examples:

class C a b where ...
class D a b | a->b where ...
class E a b | a->b, b->a ...

• either of these declarations is fine on its own:
instance D Bool Int where ...
instance D Bool Char where ...

• together they are rejected
• following is not allowed at all:

instance D [a] b where ...
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Another example

class Mult a b c where
(*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where ...
instance Mult Matrix Vector Vector where ...

m1, m2, m3 :: Matrix
(m1 * m2) * m3 -- type error; type of (m1*m2) is ambiguous
(m1 * m2) :: Matrix * m3 -- this is ok

Solution:
class Mult a b c | (a,b) -> c where
(*) :: a -> b -> c
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S. Peyton Jones: Wearing the Hair Shirt. A retrospective on Haskell.
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Reading list

primary papers

• P. Wadler, S. Blott: How to make ad-hoc polymorphism less ad
hoc. POPL’89.

• M. Jones: A theory of qualified types. ESOP’92.

• M. Jones: A system of cnstructor classes. FPCA’93.

• M. Jones: Type Classes with Functional Dependencies.
ESOP’00.

further reading

• M. Jones: Functional Programming with Overloading and
Higher-Order Polymorphism. AFPT Spring School 1995.

• A History of Haskell: Being Lazy With Class. 2007. (Section 6)

• J. Peterson and M. Jones: Implementing Type Classes. PLDI’93.

• C. Hall, K. Hammond, S. Peyton Jones, P. Wadler: Type classes
in Haskell. ESOP’94.
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