IA014: Advanced Functional rogramming

8. GADT - Generalized Algebraic Data Types (and type extensions)

Jan Obdržálek obdrzalek@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Motivation

Algebraic Data Types (ADT)

```
data Tree a = Leaf
    | Node (Trea a) a (Tree a)
```

What do we get?

- type constructor Tree, of kind * -> *
- two value constructors Leaf and Node, of types

```
> :t Leaf
Leaf :: Tree a
> :t Node
Node :: Tree a -> a -> Tree a -> Tree a
```

- value constructors can be used for pattern matching

Alternative syntax

data Tree $a=$ Leaf $\mid \operatorname{Node}($ Trea a) a (Tree a)

Observation: The types of value constructors fully describe the datatype.
data Tree a where
Leaf :: Tree a
Node :: Tree a -> a -> Tree a -> Tree a

another example

data Either a b = Left a | Right b
can be written as
data Either a b where
Left :: a -> Either a b
Right :: b -> Either a b

Range restriction of ADTs

data Tree a where
Leaf :: Tree a
Node :: Tree a -> a -> Tree a -> Tree a

- both constructors target Tree a
data Either a b where
Left :: a -> Either a b
Right :: b -> Either a b
- both constructors target Either ab

In ADTs, all constructors have identical range types.

Can this restriction be lifted?

Example: Expression evaluator

```
data Expr = I Int
                            | AddInt Expr Expr
eval :: Expr -> Int
eval e = case e of
    I i -> i
    AddInt e1 e2 -> eval e1 + eval e2
adding Booleans
data Expr = I Int
    | B Bool
    | AddInt Expr Expr
    | IsZero Expr
eval e = ...
        B b -> b
    IsZero e -> (eval e) == 0
```

 What is the type signature of eval?

Multi-type evaluator

What is the type of eval?

```
> :t IsZero (B True)
IsZero (B True) :: Expr
> :t AddInt (I 5) (B True)
AddInt (I 5) (B True) :: Expr
```

- possible results: Int, Bool, failure
- solution: Maybe (Either Int Bool)

```
eval :: Expr -> Maybe (Either Int Bool)
eval e = case e of
    AddInt e1 e2 -> case (eval e1, eval e2) of
    (Just (Left i1), Just (Left i2)) -> Just $ Left $ i1 + i2
    _ -> fail "AddInt takes two integers"
```

Problem: unreadable, exhaustive and clumsy

Phantom types

Example: newtype Const a b = Const getConst : : a

A phantom type is a parametrised type whose parameters do not all appear on the right-hand side of its definition.

```
data Expr t = I Int
    | B Bool
    | AddInt (Expr Int) (Expr Int)
    | IsZero (Expr Int)
```

However:
> :t IsZero (B True)
IsZero (B True) :: Expr t
Malformed expressions still typecheck!

Explicitly typing constructors

```
> :t IsZero (B True)
IsZero (B True) :: Expr t
```

We need to provide the type information explicitly:

```
i :: Int -> Expr Int
i = I
b :: Bool -> Expr Bool
b = B
isZero :: Expr Int -> Expr Bool
isZero = IsZero
```

Typechecker now rejects malformed expressions:

```
> :t isZero (b True)
Couldn't match expected type `Int' with actual type `Bool'...
> :t isZero (i 5)
isZero (i 5) :: Expr Bool
```


GADT evaluator 1/2

We can now put everything together:
(1) define the type and its constructors: (giving explicit types)
data Expr t where

```
I :: Int -> Expr Int
B :: Bool -> Expr Bool
AddInt :: Expr Int -> Expr Int -> Expr Int
IsZero :: Expr Int -> Expr Bool
If :: Expr Bool -> Expr t -> Expr t -> Expr t
```

(2) malformed expressions are now rejected by the typechecker:

```
> :t IsZero (B True)
Couldn't match expected type `Int' with actual type `Bool'...
> :t IsZero (I 5)
IsZero (I 5) :: Expr Bool
```


GADT evaluator 2/2

(3) the evaluator itself is almost trivial:

```
eval :: Expr t -> t
eval (I i) = i
eval (B b) = b
eval (AddInt e1 e2) = eval el + eval e2
eval (IsZero e) = eval e == 0
eval (If e1 e2 e3) = if eval e1
    then eval e2
    else eval e3
```


GADTs

- unlike for algebraic datatypes, constructors can target only a subset of the type:

```
data Expr t where
    I :: Int -> Expr Int
    B :: Bool -> Expr Bool
```

- pattern matching causes type refinement:
eval :: Expr t -> t
eval (I i) = ...
(the type t is refined to Int)
- type refinement is carried out based on user supplied type annotations

Existential types as GADTs

Existential types drop the restriction that every type variable that appears on the right-hand side must also appear on the left-hand side (when creating a new type)

- example: showable heterogenous list

```
data Obj = forall a. (Show a) => Obj a
xs :: [Obj]
xs = [Obj 1, Obj "foo", Obj 'c']
doShow :: [Obj] -> String
doShow [] = ""
doShow ((Obj x):xs) = show x ++ doShow xs
```

- subsumed by GADTs:
data Obj where
Obj :: Show a => a -> Obj

Type inference for GADTs

Is it necessary to give all those type signatures?
data Test t where
TInt :: Int -> Test Int
TString :: String -> Test String
f (TString s) $=s$

- two possible principal types:

```
f :: Test t -> [Char]
f :: Test t -> t
```

- neither one is an instance of the other
- HM always derives the principal (most general) type!

This fails to typecheck:

```
\(\mathrm{f}^{\prime}(\) (TString s\()=\mathrm{s}\)
\(\mathrm{f}^{\prime}\) (TInt i) \(=\mathrm{i}\)
```

Adding f' :: Test t -> t fixes the problem.

Safe Lists and Vectors

Revision: Standard lists

```
data List t = Nil | Cons t (List t)
In the GADT syntax:
data List t where
    Nil :: List t
    Cons :: t -> List t -> List t
```

The head function is defined as:

```
listHead :: List t -> t
```

listHead (Cons a _) = a
listHead Nil = error "list is empty"

Problem?

```
> :t listHead Nil
listHead Nil :: t
> listHead Nil
*** Exception: list is empty
```

Can fail at runtime.
IA014 8. GADT - Generalized Algebraic Data Types (and type extensions)

Safe lists

A list can be either empty, or non-empty:
data Empty
data NonEmpty
We remember this information in the type of the list:
data SafeList a b where
Nil : : SafeList a Empty
Cons:: a -> SafeList a b -> SafeList a NonEmpty
safeHead :: SafeList a NonEmpty -> a
safeHead (Cons x_{-}) = x
safeHead is safe:

```
> safeHead (Cons "hiya" Nil)
"hiya"
> safeHead Nil
<interactive>:1:9:
    Couldn't match `NonEmpty' against `Empty' ...
```


Vectors - Lists of a fixed length

To express list length, we need to encode natural numbers on the type level:
data Zero
data Succ n
Vectors - lists with a fixed number of elements:

```
data Vec a n where
```

 Nil :: Vec a Zero
 Cons :: a -> Vec a n -> Vec a (Succ n)
 Example:

```
> :t Cons 'a' (Cons 'b' Nil)
Cons 'a' (Cons 'b' Nil) :: Vec Char (Succ (Succ Zero))
> :t Nil
Nil :: Vec a Zero
```


Safe head function

headSafe :: Vec a (Succ n) -> a
headSafe (Cons x_{-}) = x
Note: no case for Nil required.

- :t headSafe Nil fails

```
> :t headSafe Nil
    Couldn't match type `Zero' with `Succ n0'
```

- adding a case: headSafe $\mathrm{Nil}=$ error "bad, bad boy"

```
> :l gadt.hs
[1 of 1] Compiling Main ( gadt.hs, interpreted )
gadt.hs:43:10:
    Couldn't match type `Succ n' with `Zero'
    Inaccessible code in
        a pattern with constructor
        Nil :: forall a. Vec a Zero,
        in an equation for 'headSafe'
```


More functions on vectors

```
mapSafe :: (a -> b) -> Vec a n -> Vec b n
mapSafe _ Nil = Nil
mapSafe f (Cons x xs) = Cons (f x) (mapSafe f xs)
zipWithSafe :: (a -> b -> c) -> Vec a n -> Vec b n -> Vec c n
zipWithSafe f Nil Nil = Nil
zipWithSafe f (Cons x xs) (Cons y ys) =
    Cons (f x y) (zipWithSafe f xs ys)
```

In both cases above, it is necessary to explicitly declare the type signature!

Even more functions on vectors

Reversing vectors is also possible:

```
snoc :: Vec a n -> a -> Vec a (Succ n) -- necessary
snoc Nil y = Cons y Nil
snoc (Cons x xs) y = Cons x (snoc xs y)
reverseSafe :: Vec a n -> Vec a n -- necessary
reverseSafe Nil = Nil
reverseSafe (Cons x xs) = snoc xs x
```


Problematic case:

What if we want to join two vectors?

```
append :: Vec a n -> Vec a m -> Vec a (m+n)
```

The problem: m and n are types!

Vector join: solution 1

We encode the addition as (yet another) GADT:

```
data Sum m n s where
    SumZero :: Sum Zero n n
    SumSucc :: Sum m n s -> Sum (Succ m) n (Succ s)
append :: Sum m n s -> Vec a m -> Vec a n -> Vec a s
append SumZero Nil ys = ys
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys)
```

- you essentially provide a "proof" how long the first vector is

```
> append (SumSucc(SumSucc SumZero)) (Cons 'a' (Cons 'b' Nil))
    (Cons 'c' Nil)
```

- this evidence is constructed by hand
- not exactly practical

Type families

- indexed type family is a partial function at a type level
- parameters of this function are called indices
- unlike type constructors, this function does not have to be defined for all types
- example:

```
data family T a :: *
data instance T Int = T1 Int | T2 Bool
data instance T Char = TC Bool
```

- a is the index here
- the kind signature of T is $*->*$ and can be omitted
- value constructors can be completely different (unlike for parameterized types)

Vector join: solution 2

- using type families
- HASkELL: pragma \{-\# LANGUAGE TypeFamilies \#-\}

```
type family SSum m n :: *
type instance SSum Zero n = n
type instance SSum (Succ m) n = Succ (SSum m n)
append2 :: Vec a m -> Vec a n -> Vec a (SSum m n)
append2 Nil ys = ys
append2 (Cons x xs) ys = Cons x (append2 xs ys)
```

- note that type instance defines new type synonyms, not new types (unlike data instance)

More kinds

The standard kind system (using only $*$ and $->$) is too limited. E.g the following does not make sense, but still typechecks:
> : k Vec Bool Bool
Vec Bool Bool :: *
The problem here is that Vec :: * -> * -> *.
DataKinds

- \{-\# LANGUAGE DataKinds \#-\}
- Nat gets promoted to a new kind
- now Vec : : * -> Nat -> *

```
> :k Vec Bool Bool
<interactive>:1:10:
    Kind mis-match
    The second argument of 'Vec' should have kind 'Nat',
    but `Bool' has kind '*'
    In a type in a GHCi command: Vec Bool Bool
```


Data type promotion

- complements kind polymorphism
- value constructors also become type constructors

Promoted kind and example type

kinds	Original data type and example value	'Nat
types	Nat	'Succ ('Succ 'Zero)
values	Succ (Succ Zero)	

- quote is used to resolve ambiguity (e.g. 'Zero is a type)

```
> type T2 = Succ (Succ Zero)
> :i T2
type T2 = 'Succ ('Succ 'Zero)
> let a = Succ (Succ Zero)
> :t a
a :: Nat
```


Vectors can be tricky ...

Consider a function which produces a list of n values a :

```
repeatl :: Nat -> a -> Vec a n
repeatl Zero _ = Nil
repeat1 (Succ n) a = Cons a (repeat1 n a)
```

This fails to typecheck:
There is no relation between the first argument and n

Singleton types

- types containing only one value
- example: Peano numbers:

```
data SNat n where
    SZ :: SNat 'Zero
    SS :: SNat n -> SNat ('Succ n)
```

- every type of kind Nat corresponds to exactly one value
- kind Nat is mirrored in the constructors of SNat
- repeat can now easily be written as:

```
repeat2 :: SNat n -> a -> Vec a n
repeat2 SZ _ = Nil
repeat2 (SS n) a = Cons a (repeat2 n a)
```


Another example: 2-3 trees

- Every non-leaf is a 2-node or a 3-node.
- A 2-node contains one data item and has two children.
- A 3-node contains two data items and has 3 children.
- All leaves are at the same level (the bottom level)
- Every leaf node will contain 1 or 2 fields.

```
data Node s a where
    Leaf2 :: a -> Node Zero a
    Leaf3 :: a -> a -> Node Zero a
data BTree a where
    Root0 :: BTree a
    Root1 :: a -> BTree a
    RootN :: Node s a -> BTree a
```

 Node2 :: Node s a -> a -> Node s a -> Node (Succ s) a
 Node3 :: Node s a -> a -> Node s a -> a -> Node s a -> Node (Succ
 Type system guarantees that:

- only balanced trees can be constructed
- i.e. operations like insert do not break this property

Going GADTless

GADTless evaluator $1 / 3$

```
class Expr e where
    intVal :: Int -> e Int
    boolVal :: Bool -> e Bool
    add :: e Int -> e Int -> e Int
    isZero :: e Int -> e Bool
    if' :: e Bool -> e t -> e t -> e t
```

Typechecker in this case also rejects malformed expressions:

```
> :t isZero $ boolVal True
    Couldn't match type `Bool' with `Int' ...
> :t isZero $ intVal 5
isZero $ intVal 5 :: Expr e => e Bool
```


GADTless evaluator 2/3

Evaluation is implemented using a helper data type:

```
newtype Eval a = Eval {runEval :: a}
instance Expr Eval where
    intVal x = Eval x
    boolVal x = Eval x
    add x y = Eval $ runEval x + runEval y
    isZero x = Eval $ runEval x == 0
    if' x y z = if (runEval x) then y else z
```

```
> runEval $ isZero $ intVal 5
False
> runEval $ isZero $ intVal 0
True
> :t runEval $ isZero $ intVal 0
runEval $ isZero $ intVal 0 :: Bool
```


GADTless evaluator $3 / 3$

Moreover, we can also easily appropriate the evaluator:

```
newtype Print a = Print {printExpr :: String}
instance Expr Print where
    intVal x = Print $ show x
    boolVal x = Print $ show x
    add x y = Print $ printExpr x ++ "+" ++ printExpr y
    isZero x = Print $ "isZero(" ++ printExpr x ++ ")"
    if' x y z = Print $ "if (" ++ printExpr x ++ ") then (" ++
    printExpr y ++ ") else (" ++ printExpr z ++ ")"
```

> printExpr \$ isZero \$ intVal 5
"isZero(5)"

Generic programming with GADT

Binary encoder 1/3

Goal:

- encode data in binary form
- the encoder must be able to work with values of several types

```
data Type t where
    TInt :: Type Int
    TChar :: Type Char
    TList :: Type t -> Type [t]
```

Type is a representation type (values represent types)

```
> :t TInt
TInt :: Type Int
> :t TList
TList :: Type t -> Type [t]
> :t TList TInt
TList TInt :: Type [Int]
```


Binary encoder 2/3

String type is defined as list of Char elements:
tString :: Type String
tString = TList TChar
The output will be a sequence of bits:
data Bit $=$ F | T deriving (Eq, Show)
Now we can define the encoder:

```
encode :: Type t -> t -> [Bit]
encode TInt i = encodeInt i
encode TChar c = encodeChar c
encode (TList _) [] = F : []
encode (TList t) (x : xs) = T : (encode t x) ++ encode (TList t) xs
```


Binary encoder 3/3

```
encode :: Type t -> t -> [Bit]
encode TInt i = encodeInt i
encode TChar c = encodeChar c
encode (TList _) [] = F : []
encode (TList t) (x : xs) = T : (encode t x) ++ encode (TList t) xs
```

Let's test the evaluator:

```
> encode TInt 333
[T,F,T,F,F,T,T,F,T]
> encode (TList TInt) [1,2,3]
[T,T,T,T,F,T,T,T,F]
> encode tString "test"
[T,T,T,T,F,T,F,F,T,T,T,F,F,T,F,T,T,T,T,T,F,F,T,T,T,T,T,T,F,T,F,F,F]
```


Universal data type

If we pair the representation type and the value, we obtain a universal data type Dynamic:

```
data Dynamic where
    Dyn :: Type t -> t -> Dynamic
```

Example of use:

```
encode' :: Dynamic -> [Bit]
```

encode' (Dyn t v) = encode t v
> encode' \$ Dyn (TList TInt) [5,4,3]
[T, T, F, T, T, T, F, F, T, T, T, F]

We can also use Dynamic to define heterogenous lists:
d = [Dyn TInt 10, Dyn TString "test"]
Dynamic is useful e.g. for communicating with the environment, when the actual type of data is not known in advance.

