IA014: Advanced Functional Programming

9. Dependent Types

Jan Obdržálek obdrzalek@fi.muni.cz
Faculty of Informatics, Masaryk University, Brno

Dependent types

Type-term dependencies

We have so far seen:

- terms that depend on terms:

$$
\lambda x: T . t
$$

first-class functions

- types that depend on types:

Tree: * -> *
parameterized types

- terms that depend on types:
reverse: $\forall \mathrm{T}$.(List T -> List T) polymorphic terms

The only missing combination

- types that depend on terms:
[[1,2,3],[4,5,6]] : IntMatrix 23 dependent types

Dependent types

In dependently typed languages, types can

- contain (depend on) arbitrary values, and
- appear as arguments and results of arbitrary functions

Typical example: vectors

- lists of a given length
- type Vect n a, where
- a is the type of the elements
- n is the length of the list

Vect n a as a truly dependent type:

- length of the list can be an arbitrary term
- its value does not have to be known at compile time

Programming with dependent types

HASKELL does not support fully dependent types.
Some dependently typed languages:

- Coq (1989)
- mainly used as a proof assistant
- proof tactics
- base theory: Calculus of (Inductive) Constructions
- AGDA (2007 - complete rewrite of Agda I)
- HASKELL-like syntax
- focus on programming
- no tactics, proofs in functional programming style
- base theory: UTT (similar to Martin-Löf type theory)
- IDRIS (v. 0.9.15.1-October 2014)
- focus on programming
- even more Haskell-like
- unlike Agda, also focused on verified systems programming
- the presented examples will be in IDRIS.

Vectors 1/2

As before, we will need natural numbers:
data Nat = Z | S Nat
We also assume + and $*$ are overloaded for use with Nat.
The type of vectors is defined as:
data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Notes:

- : and : : are used differently from HASKELL
- syntactic sugar:
- [] for Nil
- [1,2,3] for 1::2::3: :Nil

Vectors 2/2

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

- Type stands for $*$ - i.e. Vect has kind Nat -> * -> *
- the definition above produces a family of types
- Vect is indexed by Nat and parameterized by Type basic functions
head : Vect (S n) a -> a
head (x::xs) $=x$
tail : Vect (S n) a -> Vect n a
tail (x::xs) = xs

More vector functions

Vector join

To join two vectors, we define the ++ operator as:

```
(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys
```

The type signature is used to check the definition. The following code will be rejected by the typechcecker:

```
vapp : Vect n a -> Vect m a -> Vect (n +m) a
vapp Nil ys = ys
vapp (x :: xs) ys = x :: vapp xs xs -- BROKEN
```

the repeat function
Create a vector with n copies of a value a

```
repeat : (n : Nat) -> a -> Vect n a
repeat Z x = []
repeat (S k) x = x :: repeat k x
```


Matrices

Matrices can be defined using vectors:

```
Matrix : Type -> Nat -> Nat -> Type
Matrix a n m = Vect n (Vect m a)
```

Some examples:
[[1, 2, 3],[4,5,6]] : Matrix Int 23
midentity : (Num a) => (n : Nat) -> Matrix a $n \mathrm{n}$
mtranspose : Matrix a (S n) (S m) -> Matrix a (S m) (S n)
mmult
: (Num a) => Matrix a i j -> Matrix a j k -> Matrix a i k

Finite sets

```
data Fin : Nat -> Type where
    FZ : Fin (S k)
    FS : Fin k -> Fin (S k)
```

- $F Z$ is the 0 -th element of the finite set with ($\mathrm{S} k$) elements
- FS n is the n-th element
- indexed by Nat (the number of elements)
- no constructor targets Fin Z (empty set has no elements!)
application: bounded set of naturals
E.g. for indexing vectors:

```
index : Fin n -> Vect n a -> a
```

index FZ (x :: xs) = x
index (FS k) (x : : xs) = index k xs

Implicit arguments

Let's look at index in more detail:
index : Fin n -> Vect n a -> a
index FZ [2,3]

- two arguments:
- element of a finite set of size n
- n element vector of elements of type a
- two implicit arguments: names n and a
- we could also write:
index : \{a:Type\} -> \{n:Nat\} -> Fin n -> Vect n a -> a index \{a=Int\} \{n=2\} FZ (2 :: 3 :: Nil)
- implicit parameters are derived during type inference

Dependent pairs

data Pair a b = MkPair a b
Normal pairs are defined as above, and we use (a, b) is a shortcut for Pair a b or MkPair a b.
data Sigma : (A : Type) -> (P : A -> Type) -> Type where MkSigma : \{P : A -> Type\} -> (a : A) -> P a -> Sigma A P

Syntactic sugar: (a : $A * * P$) is a type of pair of A and p and ($\mathrm{a} * * \mathrm{p}$) constructs a value of this type.

Example: pairing n with a vector of length n
vec : Sigma Nat ($\mathrm{n}=>$ Vect n Int) vec : (n : Nat ** Vect n Int) vec $=$ MkSigma $2[3,4] \quad$ vec $=(2 * *[3,4])$

Use of dependent pairs

Filtering vectors

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)
Converting a list to a vector
fromList : (l : List a) -> Vect (length l) a

