
IA014: Advanced Functional
Programming

9. Dependent Types

Jan Obdržálek obdrzalek@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

IA014 9. Dependent Types 1

mailto:obdrzalek@fi.muni.cz

Dependent types

IA014 9. Dependent Types 2

Type-term dependencies

We have so far seen:
• terms that depend on terms:
λx : T.t first-class functions

• types that depend on types:
Tree: * -> * parameterized types

• terms that depend on types:
reverse:∀T.(List T -> List T) polymorphic terms

The only missing combination
• types that depend on terms:
[[1,2,3],[4,5,6]] : IntMatrix 2 3 dependent types

IA014 9. Dependent Types 3

Dependent types

In dependently typed languages, types can
• contain (depend on) arbitrary values, and
• appear as arguments and results of arbitrary functions

Typical example: vectors
• lists of a given length
• type Vect n a, where

• a is the type of the elements
• n is the length of the list

Vect n a as a truly dependent type:
• length of the list can be an arbitrary term
• its value does not have to be known at compile time

IA014 9. Dependent Types 4

Programming with dependent types

HASKELL does not support fully dependent types.

Some dependently typed languages:
• COQ (1989)

• mainly used as a proof assistant
• proof tactics
• base theory: Calculus of (Inductive) Constructions

• AGDA (2007 – complete rewrite of Agda I)
• HASKELL-like syntax
• focus on programming
• no tactics, proofs in functional programming style
• base theory: UTT (similar to Martin-Löf type theory)

• IDRIS (v. 0.9.15.1 - October 2014)
• focus on programming
• even more Haskell-like
• unlike Agda, also focused on verified systems programming
• the presented examples will be in IDRIS.

IA014 9. Dependent Types 5

Vectors 1/2

As before, we will need natural numbers:
data Nat = Z | S Nat

We also assume + and * are overloaded for use with Nat.

The type of vectors is defined as:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Notes:
• : and :: are used differently from HASKELL

• syntactic sugar:
• [] for Nil
• [1,2,3] for 1::2::3::Nil

IA014 9. Dependent Types 6

Vectors 2/2

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

• Type stands for * – i.e. Vect has kind Nat -> * -> *
• the definition above produces a family of types
• Vect is indexed by Nat and parameterized by Type

basic functions
head : Vect (S n) a -> a
head (x::xs) = x

tail : Vect (S n) a -> Vect n a
tail (x::xs) = xs

IA014 9. Dependent Types 7

More vector functions

Vector join
To join two vectors, we define the ++ operator as:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type signature is used to check the definition. The following
code will be rejected by the typechcecker:

vapp : Vect n a -> Vect m a -> Vect (n + m) a
vapp Nil ys = ys
vapp (x :: xs) ys = x :: vapp xs xs -- BROKEN

the repeat function
Create a vector with n copies of a value a

repeat : (n : Nat) -> a -> Vect n a
repeat Z x = []
repeat (S k) x = x :: repeat k x

IA014 9. Dependent Types 8

Matrices

Matrices can be defined using vectors:

Matrix : Type -> Nat -> Nat -> Type
Matrix a n m = Vect n (Vect m a)

Some examples:

[[1,2,3],[4,5,6]] : Matrix Int 2 3
midentity : (Num a) => (n : Nat) -> Matrix a n n
mtranspose : Matrix a (S n) (S m) -> Matrix a (S m) (S n)
mmult : (Num a) => Matrix a i j -> Matrix a j k -> Matrix a i k

IA014 9. Dependent Types 9

Finite sets

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

• FZ is the 0-th element of the finite set with (S k) elements
• FS n is the n-th element
• indexed by Nat (the number of elements)
• no constructor targets Fin Z (empty set has no elements!)

application: bounded set of naturals

E.g. for indexing vectors:
index : Fin n -> Vect n a -> a
index FZ (x :: xs) = x
index (FS k) (x :: xs) = index k xs

IA014 9. Dependent Types 10

Implicit arguments

Let’s look at index in more detail:

index : Fin n -> Vect n a -> a
index FZ [2,3]

• two arguments:
• element of a finite set of size n
• n element vector of elements of type a

• two implicit arguments: names n and a
• we could also write:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a
index {a=Int} {n=2} FZ (2 :: 3 :: Nil)

• implicit parameters are derived during type inference

IA014 9. Dependent Types 11

Dependent pairs

data Pair a b = MkPair a b

Normal pairs are defined as above, and we use (a,b) is a
shortcut for Pair a b or MkPair a b.

data Sigma : (A : Type) -> (P : A -> Type) -> Type where
MkSigma : {P : A -> Type} -> (a : A) -> P a -> Sigma A P

Syntactic sugar: (a : A ** P) is a type of pair of A and p
and (a ** p) constructs a value of this type.

Example: pairing n with a vector of length n

vec : Sigma Nat (\n => Vect n Int) vec : (n : Nat ** Vect n Int)
vec = MkSigma 2 [3, 4] vec = (2 ** [3, 4])

IA014 9. Dependent Types 12

Use of dependent pairs

Filtering vectors
filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

Converting a list to a vector
fromList : (l : List a) -> Vect (length l) a

IA014 9. Dependent Types 13

