
IA014: Advanced Functional
Programming

10. I/O and Concurrency

Jan Obdržálek obdrzalek@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

IA014 10. I/O and Concurrency 1

mailto:obdrzalek@fi.muni.cz

Monadic I/O

IA014 10. I/O and Concurrency 2

Pure programs and I/O

• pure functional program (e.g. in HASKELL) implements a
function

• no side effects
• but the purpose of a program is to produce a side effect:

• produce an output, send a message, modify a screen . . .

• the side effects have to be outside of the program

IA014 10. I/O and Concurrency 3

Monadic I/O

A value of type IO a is an “action” (computation) that may do
some input/output before producing a value of type a.

The meaning of “do some input/output”: modify the outside
world

type IO a = World -> (a, World)

IA014 10. I/O and Concurrency 4

The IO monad

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

(>>) :: IO a -> IO b -> IO b
(>>) a b = a >>= (\x -> b)
do notation can be used
IA014 10. I/O and Concurrency 5

Program as an I/O action

In HASKELL

• the whole program defines a single big I/O action.
• its type is IO (), and
• the program is executed by performing the action.

Example:

main :: IO ()
main = do xs <- getLine

putStrLn (reverse xs)

The world is treated in a single-threaded way:
• >>= is the only operation for combining I/O actions
• the world is never duplicated or thrown away
• (and the programmer cannot break this)

IA014 10. I/O and Concurrency 6

Control structures 1/2

Monadic I/O lets us do imperative programming, including
control structures.

Examples:
• an infinite loop

forever :: IO () -> IO ()
forever a = a >> forever a

• n-times loop

repeatN :: Int -> IO a -> IO ()
repeatN 0 a = return ()
repeatN n a = a >> repeatN (n-1) a

Why we can do this: actions as first class values.

IA014 10. I/O and Concurrency 7

Control structures 2/2

Users are free to define other kinds of control structures.

Examples

Let us execute a sequence of actions:

sequence_ :: [IO a] -> IO ()
sequence_ [] = return ()
sequence_ [x:xs] = do x; sequence_ xs

Now we can define for as:

for :: [a] -> (a -> IO ()) -> IO ()
for ns f = sequence_ (map f ns)

Exercise:

• define while :: IO Bool -> IO ()

IA014 10. I/O and Concurrency 8

References

Goal: to create mutable variables
Idea: IO operations provide us with sequentialized input/output

data IORef a

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

Example:
import Data.IORef
main = do varA <- newIORef 0

a0 <- readIORef varA
writeIORef varA 1
a1 <- readIORef varA
print (a0, a1)

Arrays, hashtables etc. are implemented in the same way

IA014 10. I/O and Concurrency 9

Concurrency

IA014 10. I/O and Concurrency 10

Concurrency vs parallelism

Parallelism
• multiple processors/cores to gain performance
• no communication between processes
• no semantic impact (same result if executed sequentially

and in parallel)
• deterministic

Concurrency
• concurrency as part of specification
• concurrent threads, each doing I/O independently
• behaviour is non-deterministic
• substantial semantic impact

We will use CONCURRENT HASKELL

(an extension of HASKELL 2010)
IA014 10. I/O and Concurrency 11

Threads

• new threads are created using forkIO

forkIO :: IO () -> IO ThreadID

• newly created thread runs concurrently with other threads
• side effects are interleaved with other threads
• in GHC threads are extremely lightweight

(≤ 100 bytes plus stack)

• HASKELL threads are movable – eliminates fragmentation
• GHC automatically spread threads among cores

IA014 10. I/O and Concurrency 12

Threads example – interleaving

import Control.Concurrent
import Control.Monad
import System.IO
main = do hSetBuffering stdout NoBuffering

forkIO (forever(putChar 'A'))
forkIO (forever(putChar 'B'))
threadDelay (10^3)

threadDelay :: Int -> IO () suspends execution for a given
number of microseconds.

One possible output:

AABB
BB
BBBBBBBBBBBBBBBBBBBBBBBBBBBABABABABABAB

IA014 10. I/O and Concurrency 13

Low level communication: MVar

MVar is very similar to IORef:

data MVar a

newEmptyMVar :: IO (MVar a)
newMVar :: a -> IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a

• MVar can hold a value or be empty
• takeMVar removes a value and blocks if MVar is empty

(until MVar becomes full)

• putMVar inserts a value and blocks if MVar is full
(until MVar becomes empty)

• waiting threads are in a FIFO queue
• only one thread is woken up at a time

IA014 10. I/O and Concurrency 14

MVar example

import Control.Concurrent
import System.Random

main :: IO ()
main = do

var <- newMVar [] -- MVar to collect the results
mapM_ (forkIO . task var) ["first", "second", "third"] -- 3 threads
putStrLn "Press Return to show the results."
_ <- getLine
takeMVar var >>= mapM_ putStrLn -- print the results
where

task v s = do
randomRIO (1,10) >>= \r -> threadDelay (r * 10000)
val <- takeMVar v
putMVar v (s : val)

IA014 10. I/O and Concurrency 15

Various uses of MVar

• locks
• type MVar () is sufficient
• takeMVar acquires the lock, putMVar releases

or the other way round – just be consistent

• one-place channels
can be used for asynchronous communication

• containers for shared mutable states

IA014 10. I/O and Concurrency 16

Asynchronous I/O

import Control.Concurrent
import Data.ByteString as B
import GetURL

main = do
m1 <- newEmptyMVar
m2 <- newEmptyMVar

forkIO $ do
r <- getURL "http://www.wikipedia.org/wiki/Shovel"
putMVar m1 r

forkIO $ do
r <- getURL "http://www.wikipedia.org/wiki/Spade"
putMVar m2 r

r1 <- takeMVar m1
r2 <- takeMVar m2
print (B.length r1, B.length r2)

IA014 10. I/O and Concurrency 17

The async package

data Async a = Async (MVar a)

async :: IO a -> IO (Async a)
async action = do
var <- newEmptyMVar
forkIO (do r <- action; putMVar var r)
return (Async var)

wait :: Async a -> IO a
wait (Async var) = readMVar var

Our code can now be written as:

main = do
a1 <- async (getURL "http://www.wikipedia.org/wiki/Shovel")
a2 <- async (getURL "http://www.wikipedia.org/wiki/Spade")
r1 <- wait a1
r2 <- wait a2
print (B.length r1, B.length r2)

IA014 10. I/O and Concurrency 18

Channels

MVars can be used as a building block to construct larger
abstractions.

Case study: Channels

Channel – unlimited buffer for communicating between
processes.

Interface:
data Chan a

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()

IA014 10. I/O and Concurrency 19

Channel implementation

Channel contents:

type Stream a = MVar (Item a)
data Item a = Item a (Stream a)

Channel data type:

data Chan a = Chan (MVar (Stream a)) (MVar (Stream a))

(we have pointers to the first and last element)

IA014 10. I/O and Concurrency 20

Channel access

newChan :: IO (Chan a)
newChan = do
hole <- newEmptyMVar
readVar <- newMVar hole
writeVar <- newMVar hole
return (Chan readVar writeVar

writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
newHole <- newEmptyMVar
oldHole <- takeMVar writeVar
putMVar oldHole (Item val newHole)
putMVar writeVar newHole

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
stream <- takeMVar readVar
Item val tail <- takeMVar stream
putMVar readVar tail
return val

IA014 10. I/O and Concurrency 21

Software Transactional Memory
(STM)

IA014 10. I/O and Concurrency 22

Motivation

Problems with lock-based approaches
• races (missing some locks)
• deadlocks (wrong order of locks)
• too conservative use (inhibits concurrency)
• simple typos
• . . .
• locks do not compose well

(no support for modular programming)

IA014 10. I/O and Concurrency 23

Atomic memory transactions

• alternative to locking
• inspiration in the database world (transactions, ACID)
• mark a block of code which should be atomic

atomically <code>

• whole block or nothing – Atomicity
• execute blocks independently – Isolation
• no lock induced deadlocks (no locks!)
• easy error recovery

Such approaches are known as
Software Transactional Memory (STM)

IA014 10. I/O and Concurrency 24

How to implement STM?

One possible way:
• execute the atomic block without any locking

(optimistic synchronization)

• record every memory read and write
• writes are simulated on side
• after the block execution is finished, validate the

transaction
• check, that every read variable has the same value as was

recorded in the log
• if valid, commit the changes to variables
• if not, re-run the atomic block

IA014 10. I/O and Concurrency 25

Simplistic approach to atomically

“That’s what IO is for . . . ”

atomically :: IO a -> IO a

Sample use:

main = do r <- newIORef 0
fork (atomically (incRef r))
atomically (incRef r)

where
incRef var = do v <- readIORef var

writeIORef var (v+1)

Problems:
• What if we forget to add the atomically wrapper?
• I/O actions do not work well in this model:

atomically (if n>k then launch_missiles)

IA014 10. I/O and Concurrency 26

The STM monad

• introduces “tracked” imperative variables (TVar)
(also known as “transactional variables”)

• the monad then “tracks” the transactions

data STM a :: * -> *

atomically :: STM a -> IO a

retry :: STM a
orElse :: STM a -> STM a -> STM a
check :: Bool -> STM ()

data TVar a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

IA014 10. I/O and Concurrency 27

Example: banking account

type Account = TVar Int

withdraw :: Account -> Int -> STM ()
withdraw acc amount = do

bal <- readTVar acc
writeTVar acc (bal - amount)

deposit :: Account -> Int -> STM ()
deposit acc amount = withdraw acc (- amount)

Type system guarantees that TVars cannot be used outside
transactions:
bad :: Account -> IO ()
bad acc = do hPutStr stdout "Withdrawing..."

withdraw acc 10

good :: Account -> IO ()
good acc = do hPutStr stdout "Withdrawing..."

atomically (withdraw acc 10)

IA014 10. I/O and Concurrency 28

Blocking: retry

What if there are not sufficient funds?

limitedWithdraw :: Account -> Int -> STM ()
limitedWithdraw acc amount = do

bal <- readTVar acc
if amount > 0 && amount > bal
then retry
else writeTVar acc (bal - amount)

retry semantics:
• current transaction is abandoned and retried at some later

time (retrying immediately makes no sense)

• efficient implementation would wait for some write to acc
(Why acc? Easily detected in the transaction log!)

IA014 10. I/O and Concurrency 29

Check & retry

The pattern we used on the previous slide is very common:

Check a boolean condition, and retry if not satisfied.

check :: Bool -> STM ()
check True = return ()
check False = retry

Now we can rewrite limitedWithdrawal in a more concise
way:

limitedWithdraw :: Account -> Int -> STM ()
limitedWithdraw acc amount = do

bal <- readTVar acc
check (amount <= 0 || amount <= bal)
writeTVar acc (bal - amount)

IA014 10. I/O and Concurrency 30

Trying alternative ways: orElse

What if we have two accounts, and, if the first one does not
have sufficient funds, want to make withdrawal from the
second?

The perfect job for orElse :: STM a -> STM a -> STM a!

limitedWithdraw2 :: Account -> Account -> Int -> STM ()
limitedWithdraw2 acc1 acc2 amt =

orElse (limitedWithdraw acc1 amt) (limitedWithdraw acc2 amt)

The semantics of orElse a1 a2:
• tries to perform a1

• if a1 retries, tries to perform a2

• if a2 retries, the whole action retries

IA014 10. I/O and Concurrency 31

It’s Christmas!

IA014 10. I/O and Concurrency 32

The Santa Claus problem

Santa repeatedly sleeps until wakened by either all of his nine
reindeer, back from their holidays, or by a group of three of his
ten elves. If awakened by the reindeer, he harnesses each of
them to his sleigh, delivers toys with them and finally
unharnesses them (allowing them to go off on holiday). If
awakened by a group of elves, he shows each of the group into
his study, consults with them on toy R&D and finally shows them
each out (allowing them to go back to work). Santa should give
priority to the reindeer in the case that there is both a group of
elves and a group of reindeer waiting.

Trono, 1994

IA014 10. I/O and Concurrency 33

Reading

• S. Peyton Jones: Tackling the Awkward Squad: monadic
input/output, concurrency, exceptions, and
foreign-language calls in Haskell. Marktoberdorf 2001

• S. Peyton Jones: Beautiful Concurrency. Chapter in
Beautiful Code, 2007.

• S. Marlow: Parallel and Concurrent Programming in
Haskell. 2012.

• IO inside. Haskellwiki.
https://www.haskell.org/haskellwiki/IO_inside

Original papers:
• T. Harris, S. Marlow, S. Peyton Jones, M. Herlihy:

Composable Memory Transactions. PPoPP’05.

IA014 10. I/O and Concurrency 34

https://www.haskell.org/haskellwiki/IO_inside

	Monadic I/O
	Concurrency
	Software Transactional Memory (STM)

