Syntactic Formalisms for Parsing Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang)

ial61@nlp.fi.muni.cz

Autumn 2014

CZ.1.07/2.2.00/28.0041 Centrum interaktivních a multimediálních studijních opor pro inovaci výuky a efektivní učení

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

IA161	Syntactic Formalisms for Parsing Natural Languages	1 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 40
Introducing			Introducing		
Course ob	Course objective			abus	

Introducing

- theoretical backgrounds on parsing
- parsing methods focused on syntax
- practical implementation methods
- possible applications and evaluations

PART I : Theoretical backgrounds

- Historical overview
- State of the art parsing methods and trends
- Advanced syntactic formalisms

PART II : Practical applications

- Applications & Use Cases
- Practical Implementations
- Parsing Evaluation

Intro	101	20

- Weekly lectures (2 hours)
- Final written exam
- Two homework assignments
- Grading
 - Final exam: 60 points
 - Each homework: 20 points
 - For each homework 10 % top scoring individuals receive 5 bonus points
 - Points required for colloquium: 60 points

Introductive and Historical Overview on Natural Languages Parsing

IA161 Syntactic Formalisms for Parsing Natural Languages

IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 1	5 / 40	IA161 Syntactic Formalisms for Parsing Natural Languages 6 / 40 Lecture 1
Main poin	ts		Why natural language processing ?
			Huge amounts of data from Internet and Intranet
			 Applications for processing large amounts of texts need NLP expertise
Introduct	Introduction to Natural Language Processing		Classify text into categories
Issues in	Syntax		 Index and search large texts
What is a	a parsing?		Automatic translation
			Speech recognition
 Overviev 	v of Parsing methods and trends		Information extraction
			Automatic summarization
			Question answering
			Knowledge acquisition
			Text generation/dialogues

Lecture 1	Lecture 1
History of Natural Language Processing	History of Natural Language Processing
 1948 - 1st NLP application? dictionary look-up system by Andrew Booth, for machine translation purposes developed at Birkbeck College, London University 	<section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header>
IA161 Syntactic Formalisms for Parsing Natural Languages 9 / 40	IA161 Syntactic Formalisms for Parsing Natural Languages 10 / 40

History of Natural Language Processing

1949 – Warren Weaver

Natural Sciences Division Director in the Rockefeller Foundation

Mathematician, Science Advocate

WWII code breaker

He viewed Russian as English in code – the "Translation" memorandum

Also knowing nothing official about, but having guessed and inferred considerable about powerful new mechanized methods in cryptography – methods which I believe succeed even when one does not know what language has been coded – one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

History of Natural Language Processing

1966 – Over-promised under-delivered

- Machine Translation worked only word by word
- NLP brought the first hostility of research funding agencies
 - NLP gave AI a bad name before AI had a name.
- All funding of NLP came to a grinding halt due to the infamous ALPAC report.
 - Public spent 20 million with very limited outcomes.
- 1966-1976 "A lost decade"
- Revival in 1980's
 - Martin Kay: The Proper Place of Men and Machines in Language Translation

Lecture 1

NLP looked to Linguistics

Linguistics is language described, not prescribed. Linguistics had few applicable theories for Machine Translation

1957 – Noam Chomsky's Syntactic Structures revolutionized Linguistics as it applies to Machine Translation.

- Rule based system of syntactic structures.
- Believed there are features common to all languages that enable people to speak creatively and freely.
- Hypothesized all children go through the same stages of language development regardless of the language they are learning

 a concept of an innate Universal Grammar (never proven)
- One of the most prominent persons of NLP in 20th century, though very controversial.

Lecture 1

NLP looked to Linguistics

■ 1958 – Bar-Hillel report

Concluded Fully-Automatic High-Quality Translation (FAHQT) could not be accomplished without human knowledge.

1968 – Case Grammar (Fillmore)

- "The case for case" paper
- Later evolved into Frame Semantics

1970 – Augmented Transition Networks (Woods)

- Procedural Semantics Theory of the "meaning" of sentence.
- Augmented Transition Network (ATN) parser

IA161	Syntactic Formalisms for Parsing Natural Languages	13 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	14 / 40
Lecture 1			Lecture 1		
Successfu	I NLP Systems		Successful I	NLP Systems II	

1970 – Shrdlu (Terry Winograd)

Human: Pick up a big red block. Computer: OK. Human: Grasp the pyramid. Computer: I don't understand which pyramid you mean. Human (changing their mind): Find a block which is taller than the one you are holding and put it into the box. Computer: By "it", I assume you mean the block which is taller than the one I am holding. Computer: OK. Human: What does the box contain? Computer: The blue pyramid and the blue block. Human: What is the pyramid supported by? Computer: The box. Human: How many blocks are not in the box? Computer: Four of them. Human: Is at least one of them narrower than the one which I told you to pick up? Computer: Yes, the red cube.

1973 – Lunar question answering system (Woods)

WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN HIGH ALKALI ROCKS?

WHAT SAMPLES CONTAIN P200?

- GIVE ME THE MODAL ANALYSES OF P200 IN THOSE SAMPLES
- GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM

Lecture 1

Successful NLP Systems III

What is a natural language parsing ?

1976 – TAUM-METEO (University of Montreal)

prototype MT system for translating weather forecasts between English and French

1985 – METEO (John Chandioux)

- successor of TAUM-METEO
- in operational use at Environnement Canada forecasts until 30th of September 2001

1970 - SYSTRAN

- provided translations for US Air Force's Foreign Technology Division
- adopted by XEROX (1978)
- still developed, present in wide range of systems
- Google language tools
- Microsoft spell check

One of the most commonly researched tasks in Natural Language Processing (NLP)

Parsing, in traditional sense, is what happens when a student takes the words of a sentences one by one, assigns each to a part of speech, specifies its grammatical categories, and lists the grammatical relations between words (identifying subject and various types of object for

a verb, specifying the word with which some other word agrees, and so on).

IA161	Syntactic Formalisms for Parsing Natural Languages	17 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	18 / 40
	Lecture 1			Lecture 1	
Characte	ristics of parsing		New notions	s of parsing	

Much of the history of parsing until a few decades ago can be understood as the direct consequence of the history of theories of grammar:

- Parsing is done by human beings, rather than by physical machines or abstract machine
- What is parsed is a bit of natural language, rather than a bit of some language-like symbolic system
- Parsing is heuristic rather than algorithmic

In the second half of 20th century the parsing has come to be extended to a large collection of operations in relation with theoretical linguistics, formal language theory, computer science, artificial intelligence and psycholinguistics:

- Parsing is the syntactic analysis of languages.
- The objective of Natural Language Parsing is
 - to determine parts of sentences (such as verbs, noun phrases, or relative clauses), and the relationships between them (such as subject or object).
- Unlike parsing of formally defined artificial languages (such as Java or predicate logic), parsing of natural languages presents problems due to ambiguity, and the productive and creative use of language.

Parsing	Practical function of a parsing
The grammar for Natural Language is ambiguous and typical sentences have multiple possible analyses (syntactically and sentences)	Parsing can tell us when a sentence is in a language defined by

sentences have multiple possible analyses (syntactically and semantically).

Lecture 3

- Some parsing tools (i.e. grammatical, morphologic, syntactic, statistic, probabilistic, heuristic, ...) help to find the most plausible parse tree of a given sentence.
- Parsing can tell us when a sentence is in a language defined by a grammar

Lecture 1

Parsing makes the extraction of the information possible by identifying relations between words, or phrases in sentences.

IA161	Syntactic Formalisms for Parsing Natural Languages	21 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	22 / 40
Lecture 1			Lecture 1		
Practical	function of a parsing		Practical fu	nction of a parsing	

Parsers are being used in a number of disciplines:

- In computer science
 - Compiler construction, database interfaces, self-describing databases, artificial intelligence...
- In linguistics
 - Text analysis, corpora analysis, machine translation...
- In document preparation and conversion
- In typesetting chemical formulae
- In chromosome recognition

However,

- Many different possible syntactic formalisms:
 - Regular expressions, Context-free grammars, Context-sensitive grammars, ...
- Many different ways of representing the results of parsing:
 - Parse tree, Chart, Graph, ...

Lecture 1	Lecture 1	
Linguistics levels of analysis	Issues in syntax	

Speech

- Written language
 - Phonetics
 - Phonology
 - Morphology
 - Syntax
 - Semantics
 - Beyond: pragmatic, cognitive, logic...

Each level has an input and output representation, output from one level is the input to the next, sometimes levels might be skipped (merged) or split.

- Propagation of errors from lower levels mainly morphology, need to correctly identify the part of speech (POS) "The man did his homework"
 - Who did what? man=noun; did=verb; his=genitive; homework=noun
- Identify collocations
 - Mother in law, hot dog, ...

IA161	Syntactic Formalisms for Parsing Natural Languages	25 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	26 / 40
Lecture 1			Lecture 1		
More issue	es in Syntax		Major Issue	s in NLP	

Anaphora resolution

"The <u>son</u> of my professor entered my class. <u>He</u> scared me."

Preposition attachment*"I saw the man in the park with a telescope."*

Ambiguity in Language:

- Syntactic (structural)
- Semantic (word sense)
- Referential

Ambiguity Makes NLP difficult

Syntax input and output

Structural/Syntactic ambiguity

- I saw the Grand Canyon flying to New York.
- I saw the sheep grazing in the field.

Word Sense ambiguity

- The man went to the bank to get some cash.
- The man went to the bank and jumped in the river.

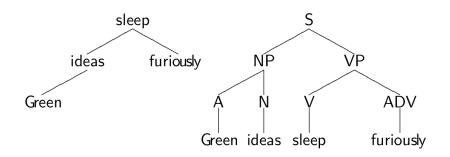
Referential ambiguity

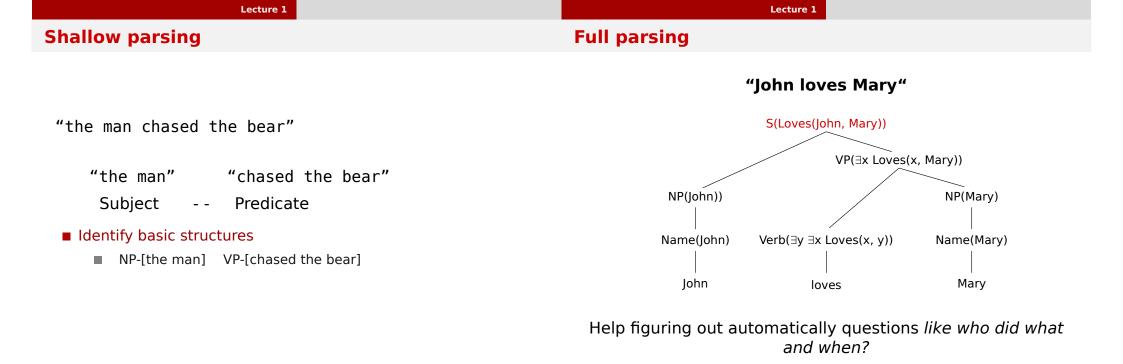
- Steve hated Paul. He hit him.
- He = Steve ? or he = Paul ?

- Input: sequence of pairs (lemma, (morphological) tag)
- Output: sentence structure (tree) with annotated nodes (all lemmas, (morpho-syntactic tags, functions) of various forms

Deals with:

The relation between lemmas & morphological categories and the sentence structure use syntactic categories such as subject, verb, object,...


IA161	Syntactic Formalisms for Parsing Natural Languages	29 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	30 / 40
	Lecture 1			Lecture 1	
Syntactic representation			Dependency	y Tree vs. PS Tree	


Tree structure

- Two main ideas for the tree
 - Phrase structure (derivation tree)
 - Using bracketed grouping
 - Brackets annotated by phrase type
 - Heads (often) explicitly marked

Dependency structure

- Basic relation: head (governor) dependent
- Links annotated by syntactic functions
- Phrase structure implicitly present

IA161	Syntactic Formalisms for Parsing Natural Languages	33 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	34 / 40
Lecture 1			Lecture 1		
Historical overview of parsing methods			Historical overview of parsing methods		

Basically two ways to parse a sentence

Top-down vs. **Bottom-up**

We can characterize the search strategy of parsing algorithms in terms of the **direction** in which a structure is built: from the words upwards (bottom-up) or from the root node downwards (top-down)

Directionality in these two ways

Directional vs. Non-directional

- Non-directional top-down methods by S. Unger (1968)
- Non-directional bottom-up methods by CYK
- Directional top-down methods:
 - The predict/match automaton, Depth-first search (backtrack), Breadth-first search (Greibach), Recursive descent, Definite Clause grammars
- Directional bottom-up methods:
 - The shift/reduce automaton, Depth-first search (backtrack), Breadth-first search, restricted by Earley(1970)

Lecture 1	Lecture 1	
Historical overview of parsing methods	Summary	
Methods originating at parsing of formal languages		
Linear directional top-down methods:	Natural language parsing as one of the NLP domain	
LL(K)	Extended notion of parsing in relation with different fields	
Linear directional bottom-up methods:		
 Precedence, bounded-context, LR (k), LALR(1), SLR(1) 	Ambiguity of language	
	What is it to "parse"?	
Methods specifically devised for parsing of natural languages	Overview of basic parsing methods	
 Generalized LR (Masaru Tomita) Chart parsing (Martin Kay) 		

IA161	Syntactic Formalisms for Parsing Natural Languages	37 / 40	IA161	Syntactic Formalisms for Parsing Natural Languages	38 / 40
Lecture 1			Lecture 1		
References I			References II		

- H. Bunt, J. Carroll & G. Satta (eds.): New Developments in Parsing Technology, Kluwer, Dordrecht/Boston/London 2004
- H. Bunt, P. Merlo, & J. Nivre (eds.): *Trends in Parsing Technology: Dependency Parsing, Domain Adaptation, and Deep Parsing*, Springer Dordrecht, Heidelberg/London/New York 2010
- H. Bunt, M. Tamita (eds.): *Recent advances in parsing technology*, Kluwer, Boston, 1996
- G. Dick: Parsing techniques: a practical guide, Springer, 2008
- Roger G. Johnson: Andrew D. Booth Britain's Other "Fourth Man". In: History of Computing. Learning from the Past, Springer Berlin Heidelberg, 2010.
- J. Hutchins: From First Conception to First Demonstration: the Nascent Years of Machine Translation, 1947–1954. A Chronology. In: Machine Translation, Volume 12, Issue 3, Kluwer, 1997.

- J. Hutchins: *Milestones no.6: Bar-Hillel and the nonfeasibility of FAHQT. In: International Journal of Language and Documentation no.1*, 1999.
- M. Kay: The proper place of men and machines in language translation. In: Machine Translation, Volume 12, Issue 1–2, Kluwer 1997 (reprint of 1980).
- More on history of MT: http://www.hutchinsweb.me.uk/history.htm