Lemke-Howson Algorithm – Notation

Fix a strategic-form two-player game $G = (\{1, 2\}, (S_1, S_2), (u_1, u_2))$. Assume that

- $S_1 = \{1, ..., m\}$
- $S_2 = \{m + 1, ..., m + n\}$

(I.e., player 1 has *m* pure strategies 1, ..., m and player 2 has *n* pure strategies m + 1, ..., m + n. In particular, each pure strategy determines the player who can play it.)

Assume that u_1, u_2 are positive, i.e., $u_1(k, \ell) > 0$ and $u_2(k, \ell) > 0$ for all $(k, \ell) \in S_1 \times S_2$. This assumption is w.l.o.g. since any positive constant can be added to payoffs without altering the set of (mixed) Nash equilibria.

Mixed strategies of player 1 : $\sigma_1 = (\sigma(1), \dots, \sigma(m)) \in [0, 1]^m$ Mixed strategies of player 2 : $\sigma_2 = (\sigma(m+1), \dots, \sigma(m+n)) \in [0, 1]^n$ I.e. we omit the lower index of σ whenever it is determined by the argument. A strategy profile $\sigma = (\sigma_1, \sigma_2)$ can be seen as a vector $\sigma = (\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n)) \in [0, 1]^{m+n}$.

Running Example

	3	4
1	3,1	2,2
2	2,3	3,1

- ▶ Player 1 (row) plays $\sigma_1 = (\sigma(1), \sigma(2)) \in [0, 1]^2$
- ▶ Player 2 (column) plays $\sigma_2 = (\sigma(3), \sigma(4)) \in [0, 1]^2$
- A typical mixed strategy profile is (σ(1), σ(2), σ(3), σ(4))

For example: $\sigma_1 = (0.2, 0.8)$ and $\sigma_2 = (0.4, 0.6)$ give the profile (0.2, 0.8, 0.4, 0.6).

Characterizing Nash Equilibria

Recall that by Lemma 42 the following holds:

$$(\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n)) \in \Sigma$$
 is a Nash equilibrium iff

For all $\ell = m + 1, \dots, m + n$ we have that

 $U_2(\sigma_1,\ell) \leq U_2(\sigma_1,\sigma_2)$

and either $\sigma(\ell) = 0$, or $u_2(\sigma_1, \ell) = u_2(\sigma_1, \sigma_2)$

For all k = 1, ..., m we have that

 $u_1(k,\sigma_2) \le u_1(\sigma_1,\sigma_2)$ and either $\sigma(k) = 0$, or $u_1(k,\sigma_2) = u_1(\sigma_1,\sigma_2)$

This is equivalent to the following: $(\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n)) \in \Sigma$ is a Nash equilibrium **iff**

- For all ℓ = m + 1,..., m + n we have that either σ(ℓ) = 0, or ℓ is a best response to σ₁.
- For all k = 1,..., m we have that either σ(k) = 0, or k is a best response to σ₂.

Characterizing Nash Equilibria

Given a mixed strategy $\sigma_1 = (\sigma(1), \dots, \sigma(m))$ of player 1 we define $L(\sigma_1) \subseteq \{1, 2, \dots, m+n\}$ to consist of

- all $k \in \{1, \ldots, m\}$ satisfying $\sigma(k) = 0$
- ▶ all $\ell \in \{m + 1, ..., m + n\}$ that are best responses to σ_1

Given a mixed strategy $\sigma_2 = (\sigma(m+1), \dots, \sigma(m+n))$ of player 2 we define $L(\sigma_2) \subseteq \{1, 2, \dots, m+n\}$ to consist of

- all $k \in \{1, ..., m\}$ that are best responses to σ_2
- ▶ all $\ell \in \{m + 1, ..., m + n\}$ satisfying $\sigma(\ell) = 0$

Proposition 3

 $\sigma = (\sigma_1, \sigma_2)$ is a Nash equilibrium iff $L(\sigma_1) \cup L(\sigma_2) = \{1, \dots, m+n\}$.

We also label the vector $0^m := (0, ..., 0) \in \mathbb{R}^m$ with $\{1, ..., m\}$ and $0^n := (0, ..., 0) \in \mathbb{R}^n$ with $\{m + 1, ..., m + n\}$. We consider $(0^m, 0^n)$ as a special mixed strategy profile.

How many labels could possibly be assigned to one strategy?

Running Example

	3	4
1	3,1	2,2
2	2,3	3 <i>,</i> 1

A strategy $\sigma_1 = (2/3, 1/3)$ of player 1 is labeled by 3, 4 since both pure strategies 3, 4 of player 2 are best responses to σ_1 (they result in the same payoff to player 2)

A strategy $\sigma_2 = (1/2, 1/2)$ of player 2 is labeled by 1, 2 since both pure strategies 1, 2 of player 1 are best responses to σ_2 (they result in the same payoff to player 1)

A strategy $\sigma_1 = (0, 1)$ of player 1 is labeled by 1, 3 since the strategy 1 is played with zero probability in σ_1 and 3 is the best response to σ_1

A strategy $\sigma_1 = (1/10, 9/10)$ of player 1 is labeled by 3 since no pure strategy of player 1 is played with zero probability (and hence neither 1, nor 2 labels σ_1) and 3 is the best response to σ_1 .

Non-degenerate Games

Definition: *G* is *non-degenerate* if for every $\sigma_1 \in \Sigma_1$ we have that $|supp(\sigma_1)|$ is at least the number of pure best responses to σ_1 , and for every $\sigma_2 \in \Sigma_2$ we have that $|supp(\sigma_2)|$ is at least the number of pure best responses to σ_2 . "Most" games are non-degenerate, or can be made non-degenerate by a slight perturbation of payoffs

We assume that the game G is non-degenerate.

Non-degeneracy implies that $L(\sigma_1) \le m$ for every $\sigma_1 \in \Sigma_1$ and $L(\sigma_2) \le n$ for every $\sigma_2 \in \Sigma_2$.

We say that a strategy σ_1 of player 1 (or σ_2 of player 2) is *fully labeled* if $|L(\sigma_1)| = m$ (or $|L(\sigma_2)| = n$, respectively).

Lemma 50

Non-degeneracy of G implies the following:

- If σ_i, σ'_i ∈ Σ_i are fully labeled, then L(σ_i) ≠ L(σ'_i). There are at most (^{m+n}_m) fully labeled strategies of player 1, (^{m+n}_n) of player 2.
- For every fully labeled σ_i ∈ Σ_i and a label k ∈ L(σ_i) there is exactly one fully labeled σ'_i ∈ Σ_i such that L(σ_i) ∩ L(σ'_i) = L(σ_i) ∖ {k}.

An example of a degenerate game:

Note that there are two pure best responses to the strategy 1.

Are there fully labeled strategies in the following game?

Yes, the strategy (2/3, 1/3) of player 1 is labeled by 3, 4 and the strategy (1/2, 1/2) of player 2 is labeled by 1, 2.

Exercise: Find all fully labeled strategies in the above example.

Lemke-Howson (Idea)

Define a graph $H_1 = (V_1, E_1)$ where

$$V_1 = \{\sigma_1 \in \Sigma_1 \mid |L(\sigma_1)| = m\} \cup \{0^m\}$$

and $\{\sigma_1, \sigma'_1\} \in E_1$ iff $L(\sigma_1) \cap L(\sigma'_1) = L(\sigma_1) \setminus \{k\}$ for some label *k*. Note that σ'_1 is determined by σ_1 and *k*, we say that σ'_1 is obtained from σ_1 by dropping *k*.

Define a graph $H_2 = (V_2, E_2)$ where

$$V_{2} = \{\sigma_{2} \in \Sigma_{2} \mid |L(\sigma_{2})| = n\} \cup \{0^{n}\}$$

and $\{\sigma_2, \sigma'_2\} \in E_2$ iff $L(\sigma_2) \cap L(\sigma'_2) = L(\sigma_2) \setminus \{\ell\}$ for some label ℓ . Note that σ'_2 is determined by σ_2 and ℓ , we say that σ'_2 is obtained from σ_2 by dropping ℓ .

Given
$$\sigma_i, \sigma'_i \in V_i$$
 and $k, \ell \in \{1, \dots, m+n\}$, we write $\sigma_i \xleftarrow{k,\ell} \sigma'_i$ if $L(\sigma_i) \cap L(\sigma'_i) = L(\sigma_i) \setminus \{k\}$ and $L(\sigma_i) \cap L(\sigma'_i) = L(\sigma'_i) \setminus \{\ell\}$

Running Example

(Here, the red labels of nodes are not parts of the graphs.) For example, $(0,0) \xleftarrow{2,3} (0,1)$ and $(0,1) \xleftarrow{1,4} (2/3,1/3)$ in H_1 .

Lemke-Howson (Idea)

The algorithm basically searches through $H_1 \times H_2 = (V_1 \times V_2, E)$ where $\{(\sigma_1, \sigma_2), (\sigma'_1, \sigma'_2)\} \in E$ iff either $\{\sigma_1, \sigma'_1\} \in E_1$, or $\{\sigma_2, \sigma'_2\} \in E_2$.

Given $i \in N$, we write

 $(\sigma_1, \sigma_2) \xrightarrow{k,\ell} i \quad (\sigma'_1, \sigma'_2)$

and say that k was dropped from $L(\sigma_i)$ and ℓ added to $L(\sigma_i)$ if

$$\sigma_i \stackrel{k,\ell}{\longleftrightarrow} \sigma'_i$$
 and $\sigma_{-i} = \sigma'_{-i}$.

Observe that by Lemma 50, whenever a label *k* is dropped from $L(\sigma_i)$, the resulting vertex of $H_1 \times H_2$ is uniquely determined.

Also, $|V| = |V_1||V_2| \le {\binom{m+n}{m}}{\binom{m+n}{n}}$.

Running Example

	3	4
1	3,1	2,2
2	2,3	3,1

The graph $H_1 \times H_2$ has 16 nodes.

Let us follow a path in $H_1 \times H_2$ starting in ((0,0), (0,0)):

$$\begin{array}{ccc} ((0,0),(0,0)) & \xrightarrow{2,3} & ((0,1),(0,0)) \\ & \xrightarrow{3,1} & ((0,1),(1,0)) \\ & \xrightarrow{1,4} & ((2/3,1/3),(1,0)) \\ & \xrightarrow{4,2} & ((2/3,1/3),(1/2,1/2)) \end{array}$$

This is one of the paths followed by Lemke-Howson:

- First, choose which label to drop from L(σ₁) (here we drop 2 from L(0,0)), which adds exactly one new label (here 3)
- Then always drop the *duplicit* label, i.e. the one labeling both nodes, until no duplicit label is present (then we have a Nash equilibrium)

Lemke-Howson (Idea)

Lemke-Howson algorithm works as follows:

- Start in $(\sigma_1, \sigma_2) = (0^m, 0^n)$.
- Pick a label $k \in \{1, ..., m\}$ and drop it from $L(\sigma_1)$.

This adds a label, which then is the only element of $L(\sigma_1) \cap L(\sigma_2)$.

- loop
 - If $L(\sigma_1) \cap L(\sigma_2) = \emptyset$, then stop and return (σ_1, σ_2) .
 - Let {ℓ} = L(σ₁) ∩ L(σ₂), drop ℓ from L(σ₂). This adds exactly one label to L(σ₂).
 - If $L(\sigma_1) \cap L(\sigma_2) = \emptyset$, then stop and return (σ_1, σ_2) .
 - ► Let $\{k\} = L(\sigma_1) \cap L(\sigma_2)$, drop k from $L(\sigma_1)$. This adds exactly one label to $L(\sigma_1)$.

Lemma 51

The algorithm proceeds through every vertex of $H_1 \times H_2$ at most once. Indeed, if (σ_1, σ_2) is visited twice (with distinct predecessors), then either σ_1 , or σ_2 would have (at least) two neighbors reachable by dropping the label $k \in L(\sigma_1) \cap L(\sigma_2)$, a contradiction with non-degeneracy.

Hence the algorithm stops after at most $\binom{m+n}{m}\binom{m+n}{n}$ iterations.

The previous description of the LH algorithm does not specify how to compute the graphs H_1 and H_2 and how to implement the dropping of labels.

In particular, it is not clear how to identify *fully* labeled strategies and "transitions" between them.

The complete algorithm relies on a reformulation which allows us to unify fully labeled strategies (i.e. vertices of H_1 and H_2) with vertices of certain convex polytopes.

The edges of H_1 and H_2 will correspond to edges of the polytopes.

This also gives a fully algebraic procedure for dropping labels.

Convex Polytopes

- A convex combination of points $o_1, ..., o_i \in \mathbb{R}^k$ is a point $\lambda_1 o_1 + \cdots + \lambda_i o_i$ where $\lambda_i \ge 0$ for each *i* and $\sum_{j=1}^i \lambda_j = 1$.
- A convex polytope determined by a set of points o₁,..., o_i is a set of all convex combinations of o₁,..., o_i.
- A hyperplane h is a supporting hyperplane of a polytope P if it has a non-empty intersection with P and one of the closed half-spaces determined by h contains P.
- A face of a polytope P is an intersection of P with one of its supporting hyperplanes.
- A *vertex* is a 0-dimensional face, an *edge* is a 1-dim. face.
- Two vertices are *neighbors* if they lie on the same edge (they are endpoints of the edge).
- A polyhedron is an intersection of finitely many closed half-spaces

It is a set of solutions of a system of finitely many linear inequalities

Fact: Each bounded polyhedron is a polytope, each polytope is a bounded polyhedron.

Characterizing Nash Equilibria

Let us return back to Lemma 42:

 $(\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n))$ is a Nash equilibrium iff

- For all $\ell = m + 1, \dots, m + n$: $u_2(\sigma_1, \ell) \le u_2(\sigma_1, \sigma_2)$ and either $\sigma(\ell) = 0$, or $u_2(\sigma_1, \ell) = u_2(\sigma_1, \sigma_2)$
- For all k = 1,..., m: u₁(k, σ₂) ≤ u₁(σ₁, σ₂) and either σ(k) = 0, or u₁(k, σ₂) = u₁(σ₁, σ₂)

Now using the fact that

$$u_2(\sigma_1,\ell) = \sum_{k=1}^m \sigma(k) u_2(k,\ell)$$

and

$$u_1(k,\sigma_2) = \sum_{\ell=m+1}^{m+n} \sigma(\ell) u_1(k,\ell)$$

we obtain ...

$$(\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n))$$
 is a Nash equilibrium iff

For all
$$\ell = m + 1, \ldots, m + n$$
,

$$\sum_{k=1}^{m} \sigma(k) \cdot u_2(k,\ell) \le u_2(\sigma_1,\sigma_2)$$
(3)

and either $\sigma(\ell) = 0$, or the ineq. (3) holds with equality.

For all
$$k = 1, \ldots, m$$
,

$$\sum_{\ell=m+1}^{m+n} \sigma(\ell) \cdot u_1(k,\ell) \le u_1(\sigma_1,\sigma_2) \tag{4}$$

and either $\sigma(k) = 0$, or the ineq. (4) holds with equality.

Dividing (3) by $u_2(\sigma_1, \sigma_2)$ and (4) by $u_1(\sigma_1, \sigma_2)$ we get ...

 $(\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n))$ is a Nash equilibrium iff

For all
$$\ell = m + 1, \ldots, m + n$$
,

$$\sum_{k=1}^{m} \frac{\sigma(k)}{u_2(\sigma_1, \sigma_2)} u_2(k, \ell) \le 1$$
(5)

and either $\sigma(\ell) = 0$, or the ineq. (7) holds with equality.

$$\sum_{\ell=m+1}^{m+n} \frac{\sigma(\ell)}{u_1(\sigma_1, \sigma_2)} u_1(k, \ell) \le 1$$
(6)

and either $\sigma(k) = 0$, or the ineq. (8) holds with equality.

Considering each $\sigma(k)/u_2(\sigma_1, \sigma_2)$ as an unknown value x(k), and each $\sigma(\ell)/u_1(\sigma_1, \sigma_2)$ as an unknown value $y(\ell)$, we obtain ...

... constraints in variables $x(1), \ldots, x(m)$ and $y(m+1), \ldots, y(m+n)$:

For all
$$\ell = m + 1, \dots, m + n$$
,

$$\sum_{k=1}^{m} x(k) \cdot u_2(k, \ell) \le 1$$

and either $y(\ell) = 0$, or the ineq. (7) holds with equality.

For all
$$k = 1, \ldots, m$$
,

$$\sum_{\ell=m+1}^{m+n} y(\ell) \cdot u_1(k,\ell) \le 1$$
(8)

and either x(k) = 0, or the ineq. (8) holds with equality.

For all non-negative vectors $x \ge 0^m$ and $y \ge 0^n$ that satisfy the above contraints we have that (\bar{x}, \bar{y}) is a Nash equilibrium.

Here the strategy \bar{x} is defined by $\bar{x}(k) := x(k) / \sum_{i=1}^{m} x(i)$, the strategy \bar{y} is defined by $\bar{y}(\ell) := y(\ell) / \sum_{j=m+1}^{m+n} y(j)$ Given a Nash equilibrium $(\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n))$, assigning $x(k) := \sigma(k) / u_1(\sigma_1, \sigma_2)$ for $k \in S_1$, and $y(\ell) := \sigma(\ell) / u_1(\sigma_1, \sigma_2)$ for

 $\ell \in S_2$ satisfies the above constraints.

(7)

Let us extend the notion of expected payoff a bit.

Given $\ell = m + 1, \dots, m + n$ and $x = (x(1), \dots, x(m)) \in [0, \infty)^m$ we define

$$u_2(x,\ell) = \sum_{k=1}^m x(k) \cdot u_2(k,\ell)$$

Given k = 1, ..., m and $y = (y(m + 1), ..., y(m + n)) \in [0, \infty)^n$ we define

$$u_1(k,y) = \sum_{\ell=m+1}^{m+n} y(\ell) \cdot u_1(k,\ell)$$

So the previous system of constraints can be rewritten succinctly:

- For all $\ell = m + 1, ..., m + n$ we have that $u_2(x, \ell) \le 1$ and either $y(\ell) = 0$, or $u_2(x, \ell) = 1$.
- For all k = 1, ..., m we have that $u_1(k, y) \le 1$, and either x(k) = 0, or $u_1(k, y) = 1$

Geometric Formulation

Define

$$P := \{x \in \mathbb{R}^m \mid (\forall k \in S_1 : x(k) \ge 0) \land (\forall \ell \in S_2 : u_2(x, \ell) \le 1)\}$$

 $Q := \{ y \in \mathbb{R}^n \mid (\forall k \in S_1 : u_1(k, y) \le 1) \land (\forall \ell \in S_2 : y(\ell) \ge 0) \}$

P and Q are convex polytopes.

As payoffs are positive and linear in their arguments, *P* and *Q* are bounded polyhedra, which means that they are convex hulls of "corners", i.e., they are polytopes.

We label points of P and Q as follows:

►
$$L(x) = \{k \in S_1 \mid x(k) = 0\} \cup \{\ell \in S_2 \mid u_2(x, \ell) = 1\}$$

•
$$L(y) = \{k \in S_1 \mid u_1(k, y) = 1\} \cup \{\ell \in S_2 \mid y(\ell) = 0\}$$

Proposition 4

For each point $(x, y) \in P \times Q \setminus \{(0, 0)\}$ such that $L(x) \cup L(y) = \{1, ..., m + n\}$ we have that the corresponding strategy profile (\bar{x}, \bar{y}) is a Nash equilibrium. Each Nash equilibrium is obtained this way.

Geometric Formulation

Without proof: Non-degeneracy of G implies that

- For all $x \in P$ we have $L(x) \leq m$.
- x is a vertex of P iff |L(x)| = m

(That is, vertices of *P* are exactly points incident on exactly *m* faces)

- For two distinct vertices x, x' we have $L(x) \neq L(x')$.
- Every vertex of P is incident on exactly m edges; in particular, for each k ∈ L(x) there is a unique (neighboring) vertex x' such that L(x) ∩ L(x') = L(x) \ {k}.

Similar claims are true for Q (just substitute m with n and P with Q).

Define a graph $H_1 = (V_1, E_1)$ where V_1 is the set of all vertices x of P and $\{x, x'\} \in E_1$ iff $L(x) \cap L(x') = L(x) \setminus k$.

Define a graph $H_2 = (V_2, E_2)$ where V_2 is the set of all vertices y of Q and $\{y, y'\} \in E_2$ iff $L(y) \cap L(y') = L(y) \setminus k$.

The notions of dropping and adding labels from and to, resp., remain the same as before.

Lemke-Howson (Algorithm)

Lemke-Howson algorithm works as follows:

- Start in $(x, y) := (0^m, 0^n) \in P \times Q$.
- Pick a label $k \in \{1, ..., m\}$ and drop it from L(x).

This adds a label, which then is the only element of $L(x) \cap L(y)$.

- loop
 - If $L(x) \cap L(y) = \emptyset$, then stop and return (x, y).
 - ► Let $\{\ell\} = L(x) \cap L(y)$, drop ℓ from L(y). This adds exactly one label to $L(\sigma_2)$.
 - If $L(x) \cap L(y) = \emptyset$, then stop and return (x, y).
 - ► Let $\{k\} = L(x) \cap L(y)$, drop k from L(x). This adds exactly one label to L(x).

Lemma 52

The algorithm proceeds through every vertex of $H_1 \times H_2$ at most once.

Hence the algorithm stops after at most $\binom{m+n}{m}\binom{m+n}{n}$ iterations.

How to effectively move between vertices of $H_1 \times H_2$? That is how to compute the result of dropping a label?

We employ so called *tableau method* with an appropriate *pivoting*.

Slack Variables Formulation

Recall our succinct characterization of Nash equilibria:

- For all $\ell = m + 1, ..., m + n$ we have that $u_2(x, \ell) \le 1$ and either $y(\ell) = 0$, or $u_2(x, \ell) = 1$.
- For all k = 1, ..., m we have that $u_1(k, y) \le 1$, and either x(k) = 0, or $u_1(k, y) = 1$

We turn this into a system o equations in variables $x(1), \ldots, x(m)$, $y(m+1), \ldots, y(m+n)$ and *slack variables* $r(1), \ldots, r(m)$, $z(m+1), \ldots, z(m+n)$:

$$\begin{array}{ll} u_{2}(x,\ell) + z(\ell) = 1 & \ell \in S_{2} \\ u_{1}(k,y) + r(k) = 1 & k \in S_{1} \\ x(k) \geq 0 & y(\ell) \geq 0 & k \in S_{1}, \ell \in S_{2} \\ r(k) \geq 0 & z(\ell) \geq 0 & k \in S_{1}, \ell \in S_{2} \\ x(k) \cdot r(k) = 0 & y(\ell) \cdot z(\ell) = 0 & k \in S_{1}, \ell \in S_{2} \end{array}$$

Solving this is called *linear complementary problem (LCP)*.

Tableaux

The LM algorithm represents the current vertex of $H_1 \times H_2$ using a *tableau* defined as follows.

Define two sets of variables:

 $\mathcal{M} := \{x(1), \dots, x(m), z(m+1), \dots, z(m+n)\}$ $\mathcal{N} := \{r(1), \dots, r(m), y(m+1), \dots, y(m+n)\}$

A *basis* is a pair of sets of variables $M \subseteq M$ and $N \subseteq N$ where |M| = n and |N| = m.

Intuition: Labels correspond to variables that are not in the basis

A tableau T for a given basis (M, N):

$$P: \quad v = c_v - \sum_{v' \in \mathcal{M} \setminus \mathcal{M}} a_{v'} \cdot v' \qquad v \in \mathcal{M}$$
$$Q: \quad w = c_w - \sum_{w' \in \mathcal{N} \setminus \mathcal{N}} a_{w'} \cdot w' \qquad w \in \mathcal{N}$$

Here each $c_v, c_w \ge 0$ and $a_{v'}, a_{w'} \in \mathbb{R}$.

Note that the first part of the tableau corresponds to the polytope P, the second one to the polytope Q.

Tableaux implementation of Lemke-Howson

A *basic solution* of a tableau T is obtained by assigning zero to non-basic variables and computing the rest. During a computation of the LM algorithm, the basic solutions will correspond to vertices of the two polytopes P and Q.

Initial tableau:

$$M = \{z(m+1), \dots, z(m+n)\}$$
 and $N = \{r(1), \dots, r(m)\}$

$$P: \quad z(\ell) = 1 - \sum_{k=1}^{m} x(k) \cdot u_2(k,\ell) \qquad \qquad \ell \in S_2$$

$$Q: r(k) = 1 - \sum_{\ell=m+1}^{m+n} y(\ell) \cdot u_1(k,\ell) \qquad k \in S_1$$

Note that assigning 0 to all non-basic variables we obtain x(k) = 0 for k = 1, ..., m and $y(\ell) = 0$ for $\ell = m + 1, ..., m + n$.

So this particular tableau corresponds to $(0^m, 0^n)$.

Note that non-basic variables correspond precisely to labels of $(0^m, 0^n)$.

Lemke-Howson – Pivoting

Given a tableau T during a computation:

$$P: \quad v = c_v - \sum_{v' \in \mathcal{M} \setminus \mathcal{M}} a_{v'} \cdot v' \qquad v \in \mathcal{M}$$
$$Q: \quad w = c_w - \sum_{w' \in \mathcal{N} \setminus \mathcal{N}} a_{w'} \cdot w' \qquad w \in \mathcal{N}$$

Dropping a label corresponding to a variable $\bar{v} \in M \setminus M$ (i.e. dropping a label in *P*) is done by adding \bar{v} to the basis as follows:

Find an equation $v = c_v - \sum_{v' \in \mathcal{M} \setminus \mathcal{M}} a_{v'} \cdot v'$, with *minimum* $c_v/a_{\bar{v}}$. Here $c_v \neq 0$, and we assume that if $a_{\bar{v}} = 0$, then $c_v/a_{\bar{v}} = \infty$

$$\bullet M := (M \setminus \{v\}) \cup \{\bar{v}\}$$

• Reorganize the equation so that \bar{v} is on the left-hand side:

$$\bar{v} = \frac{c_v}{a_{\bar{v}}} - \sum_{v' \in \mathcal{M} \setminus \mathcal{M}, v' \neq v} \frac{a_{v'}}{a_{\bar{v}}} \cdot v' - \frac{v}{a_{\bar{v}}}$$

Substitute the new expression for v to all other equations.
 Dropping labels in Q works similarly.

The previous slide gives a procedure for computing one step of the LH algorithm.

The computation ends when:

- For each complementary pair (x(k), r(k)) one of the variables is in the basis and the other one is not
- For each complementary pair (y(l), z(l)) one of the variables is in the basis and the other one is not

Lemke-Howson – Example

Initial tableau ($M = \{z(3), z(4)\}, N = \{r(1), r(2)\}$):

$$z(3) = 1 - x(1) \cdot 1 - x(2) \cdot 3 \tag{9}$$

$$z(4) = 1 - x(1) \cdot 2 - x(2) \cdot 1 \tag{10}$$

$$r(1) = 1 - y(3) \cdot 3 - y(4) \cdot 2$$
 (11)

$$r(2) = 1 - y(3) \cdot 2 - y(4) \cdot 3$$
 (12)

Drop the label 2 from P: The minimum ratio 1/3 is in (9).

$$x(2) = 1/3 - (1/3) \cdot x(1) - (1/3) \cdot z(3)$$
(13)

$$z(4) = 2/3 - (5/3) \cdot x(1) - (1/3) \cdot z(3)$$
(14)

$$r(1) = 1 - y(3) \cdot 3 - y(4) \cdot 2 \tag{15}$$

$$r(2) = 1 - y(3) \cdot 2 - y(4) \cdot 3$$
 (16)

Here $M = \{x(2), z(4)\}, N = \{r(1), r(2)\}.$

Drop the label 3 from Q: The minimum ratio 1/3 is in (15).

Lemke-Howson – Example (Cont.)

$$x(2) = 1/3 - (1/3) \cdot x(1) - (1/3) \cdot z(3)$$
(17)

$$z(4) = 2/3 - (5/3) \cdot x(1) - (1/3) \cdot z(3)$$
(18)

$$y(3) = 1/3 - (2/3) \cdot y(4) - (1/3) \cdot r(1)$$
 (19)

$$r(2) = 1/3 - (5/3) \cdot y(4) - (1/3) \cdot r(1)$$
(20)

Here $M = \{x(2), z(4)\}, N = \{y(3), r(2)\}.$

Drop the label 1: The minimum ratio (2/3)/(5/3) = 2/5 is in (18).

$$x(2) = 1/5 - (4/15) \cdot z(3) - (1/5) \cdot z(4)$$
(21)

$$\begin{array}{rcl} x(1) &=& 2/5 - (1/5) \cdot z(3) - (3/5) \cdot z(4) \\ y(3) &=& 1/3 - (2/3) \cdot y(4) - (1/3) \cdot r(1) \end{array} \tag{22}$$

$$r(2) = 1/3 - (5/3) \cdot y(4) - (1/3) \cdot r(1)$$
(24)

Here $M = \{x(2), x(1)\}, N = \{y(3), r(2)\}.$

Drop the label 4: The minimum ratio 1/5 is in (24).

Lemke-Howson – Example (Cont.)

$$x(2) = 1/5 - (4/15) \cdot z(3) - (1/5) \cdot z(4)$$
(25)

$$x(1) = 2/5 - (1/5) \cdot z(3) - (3/5) \cdot z(4)$$
(26)

$$y(3) = 1/5 - (1/5) \cdot r(1) - (6/15) \cdot r(2)$$
(27)

$$y(4) = 1/5 - (1/5) \cdot r(1) - (3/5) \cdot r(2)$$
 (28)

Here $M = \{x(2), x(1)\}, N = \{y(3), y(4)\}$ and thus

- $x(1) \in M$ but $r(1) \notin N$
- $x(2) \in M$ but $r(2) \notin N$
- $y(3) \in N$ but $z(3) \notin M$
- $y(4) \in N$ but $z(4) \notin M$

So the algorithm stops.

Assign z(3) = z(4) = r(1) = r(2) = 0 and obtain the following Nash equilibrium:

$$x(1) = 2/5, \quad x(2) = 1/5, \quad y(3) = 1/5, \quad y(4) = 1/5$$