Lemke-Howson Algorithm – Notation

Fix a strategic-form two-player game $G = (\{1, 2\}, (S_1, S_2), (u_1, u_2))$. Assume that

- \blacktriangleright $S_1 = \{1, \ldots, m\}$
- \triangleright $S_2 = \{m + 1, \ldots, m + n\}$

(I.e., player 1 has m pure strategies $1, \ldots, m$ and player 2 has n pure strategies $m + 1, \ldots, m + n$. In particular, each pure strategy determines the player who can play it.)

Assume that u_1, u_2 are positive, i.e., $u_1(k, \ell) > 0$ and $u_2(k, \ell) > 0$ for all $(k, \ell) \in S_1 \times S_2$. This assumption is w.l.o.g. since any positive constant can be added to payoffs without altering the set of (mixed) Nash equilibria.

Mixed strategies of player 1 : $\sigma_1 = (\sigma(1), \ldots, \sigma(m)) \in [0, 1]^m$ Mixed strategies of player 2 : $\sigma_2 = (\sigma(m+1), \ldots, \sigma(m+n)) \in [0,1]^n$ I.e. we omit the lower index of σ whenever it is determined by the argument. A strategy profile $\sigma = (\sigma_1, \sigma_2)$ can be seen as a vector $\sigma = (\sigma_1, \sigma_2) = (\sigma(1), \dots, \sigma(m+n)) \in [0,1]^{m+n}.$

Running Example

- ► Player 1 (row) plays $\sigma_1 = (\sigma(1), \sigma(2)) \in [0, 1]^2$
- ► Player 2 (column) plays $\sigma_2 = (\sigma(3), \sigma(4)) \in [0, 1]^2$
- A typical mixed strategy profile is $(\sigma(1), \sigma(2), \sigma(3), \sigma(4))$

For example: $\sigma_1 = (0.2, 0.8)$ and $\sigma_2 = (0.4, 0.6)$ give the profile $(0.2, 0.8, 0.4, 0.6).$

Characterizing Nash Equilibria

Recall that by Lemma 42 the following holds:

 $(\sigma_1, \sigma_2) = (\sigma(1), \ldots, \sigma(m+n)) \in \Sigma$ is a Nash equilibrium **iff** For all $\ell = m + 1, \ldots, m + n$ we have that $u_2(\sigma_1,\ell) \leq u_2(\sigma_1,\sigma_2)$ and either $\sigma(\ell) = 0$, or $u_2(\sigma_1, \ell) = u_2(\sigma_1, \sigma_2)$ For all $k = 1, \ldots, m$ we have that $u_1(k, \sigma_2) \leq u_1(\sigma_1, \sigma_2)$ and either $\sigma(k) = 0$, or $u_1(k, \sigma_2) = u_1(\sigma_1, \sigma_2)$

This is equivalent to the following: $(\sigma_1, \sigma_2) = (\sigma(1), \ldots, \sigma(m+n)) \in \Sigma$ is a Nash equilibrium **iff**

- For all $\ell = m + 1, \ldots, m + n$ we have that either $\sigma(\ell) = 0$, or ℓ is a best response to σ_1 .
- For all $k = 1, \ldots, m$ we have that either $\sigma(k) = 0$, or k is a best response to σ_2 .

Characterizing Nash Equilibria

Given a mixed strategy $\sigma_1 = (\sigma(1), \ldots, \sigma(m))$ of player 1 we define $L(\sigma_1) \subseteq \{1, 2, \ldots, m+n\}$ to consist of

- all $k \in \{1, \ldots, m\}$ satisfying $\sigma(k) = 0$
- all $l \in \{m+1,\ldots,m+n\}$ that are best responses to σ_1

Given a mixed strategy $\sigma_2 = (\sigma(m+1), \ldots, \sigma(m+n))$ of player 2 we define $L(\sigma_2) \subseteq \{1, 2, ..., m+n\}$ to consist of

- \triangleright all $k \in \{1, \ldots, m\}$ that are best responses to σ_2
- all $l \in \{m+1,\ldots,m+n\}$ satisfying $\sigma(l) = 0$

Proposition 3

 $\sigma = (\sigma_1, \sigma_2)$ is a Nash equilibrium **iff** $L(\sigma_1) \cup L(\sigma_2) = \{1, \ldots, m+n\}.$

We also label the vector $0^m := (0, \ldots, 0) \in \mathbb{R}^m$ with $\{1, \ldots, m\}$ and $0^n := (0, \ldots, 0) \in \mathbb{R}^n$ with $\{m+1, \ldots, m+n\}.$ We consider $(0^m, 0^n)$ as a special mixed strategy profile.

How many labels could possibly be assigned to one strategy?

Running Example

A strategy $\sigma_1 = (2/3, 1/3)$ of player 1 is labeled by 3,4 since both pure strategies 3, 4 of player 2 are best responses to σ_1 (they result in the same payoff to player 2)

A strategy $\sigma_2 = (1/2, 1/2)$ of player 2 is labeled by 1,2 since both pure strategies 1, 2 of player 1 are best responses to σ (they result in the same payoff to player 1)

A strategy $\sigma_1 = (0, 1)$ of player 1 is labeled by 1, 3 since the strategy 1 is played with zero probability in σ_1 and 3 is the best response to σ_1

A strategy $\sigma_1 = (1/10, 9/10)$ of player 1 is labeled by 3 since no pure strategy of player 1 is played with zero probability (and hence neither 1, nor 2 labels σ_1) and 3 is the best response to σ_1 .

Non-degenerate Games

Definition: G is non-degenerate if for every $\sigma_1 \in \Sigma_1$ we have that $|supp(\sigma_1)|$ is at least the number of pure best responses to σ_1 , and for every $\sigma_2 \in \Sigma_2$ we have that $|supp(\sigma_2)|$ is at least the number of pure best responses to σ_2 . "Most" games are non-degenerate, or can be made non-degenerate by a slight perturbation of payoffs

We assume that **the game** G **is non-degenerate**.

Non-degeneracy implies that $L(\sigma_1) \leq m$ for every $\sigma_1 \in \Sigma_1$ and $L(\sigma_2) \leq n$ for every $\sigma_2 \in \Sigma_2$.

We say that a strategy σ_1 of player 1 (or σ_2 of player 2) is fully labeled if $|L(\sigma_1)| = m$ (or $|L(\sigma_2)| = n$, respectively).

Lemma 50

Non-degeneracy of G implies the following:

- \blacktriangleright If $\sigma_i, \sigma'_i \in \Sigma_i$ are fully labeled, then $\mathsf{L}(\sigma_i) \neq \mathsf{L}(\sigma'_i)$. There are at most $\binom{m+n}{m}$ fully labeled strategies of player 1, $\binom{m+n}{n}$ of player 2.
- ► For every fully labeled $\sigma_i \in \Sigma_i$ and a label $k \in L(\sigma_i)$ there is exactly one fully labeled $\sigma'_j \in \Sigma_i$ such that $L(\sigma_i) \cap L(\sigma'_i) = L(\sigma_i) \setminus \{k\}.$

An example of a degenerate game:

$$
\begin{array}{c|cc}\n & 3 & 4 \\
1 & 1,1 & 1,1 \\
2 & 3,3 & 4,4\n\end{array}
$$

Note that there are two pure best responses to the strategy 1.

Are there fully labeled strategies in the following game?

$$
\begin{array}{@{}c@{\hspace{1em}}c@{\hspace{1em}}}\n & 3 & 4 \\
1 & 3,1 & 2,2 \\
2 & 2,3 & 3,1\n\end{array}
$$

Yes, the strategy (2/3, 1/3) of player 1 is labeled by 3, 4 and the strategy $(1/2, 1/2)$ of player 2 is labeled by 1, 2.

Exercise: Find all fully labeled strategies in the above example.

Lemke-Howson (Idea)

Define a graph $H_1 = (V_1, E_1)$ where

 $V_1 = \{\sigma_1 \in \Sigma_1 \mid |L(\sigma_1)| = m\} \cup \{0^m\}$

and $\{\sigma_1, \sigma'_1\} \in E_1$ iff $L(\sigma_1) \cap L(\sigma'_1) = L(\sigma_1) \setminus \{k\}$ for some label k. Note that σ_1' is determined by σ_1 and $k,$ we say that σ_1' is obtained from σ_1 by dropping k.

Define a graph $H_2 = (V_2, E_2)$ where

$$
V_2 = \{ \sigma_2 \in \Sigma_2 \mid |L(\sigma_2)| = n \} \cup \{0^n\}
$$

and $\{\sigma_2, \sigma_2'\} \in E_2$ iff $L(\sigma_2) \cap L(\sigma_2') = L(\sigma_2) \setminus \{\ell\}$ for some label ℓ . Note that σ_2' is determined by σ_2 and ℓ , we say that σ_2' is obtained from σ_2 by dropping ℓ .

Given
$$
\sigma_i
$$
, $\sigma'_i \in V_i$ and $k, \ell \in \{1, ..., m + n\}$, we write $\sigma_i \xleftarrow{k,\ell} \sigma'_i$ if $L(\sigma_i) \cap L(\sigma'_i) = L(\sigma_i) \setminus \{k\}$ and $L(\sigma_i) \cap L(\sigma'_i) = L(\sigma'_i) \setminus \{\ell\}$

Running Example

(Here, the red labels of nodes are not parts of the graphs.) For example, $(0, 0) \xrightarrow{2,3} (0, 1)$ and $(0, 1) \xrightarrow{1,4} (2/3, 1/3)$ in H_1 .

Lemke-Howson (Idea)

The algorithm basically searches through $H_1 \times H_2 = (V_1 \times V_2, E)$ where $\big\{(\sigma_1,\sigma_2),(\sigma'_1,\sigma'_2)\big\} \in E$ iff either $\big\{\sigma_1,\sigma'_1\big\} \in E_1,$ or $\big\{\sigma_2,\sigma'_2\big\} \in E_2.$

Given $i \in N$, we write

 $(\sigma_1, \sigma_2) \xrightarrow{k,\ell} i (\sigma'_1, \sigma'_2)$

and say that k was dropped from $L(\sigma_i)$ and ℓ added to $L(\sigma_i)$ if

$$
\sigma_i \xleftarrow{k,\ell} \sigma'_i
$$
 and $\sigma_{-i} = \sigma'_{-i}$.

Observe that by Lemma 50, whenever a label k is dropped from $L(\sigma_i)$, the resulting vertex of $H_1 \times H_2$ is uniquely determined.

Also, $|V| = |V_1||V_2| \leq {m+n \choose m}{m+n \choose n}.$

Running Example

The graph $H_1 \times H_2$ has 16 nodes.

Let us follow a path in $H_1 \times H_2$ starting in $((0, 0), (0, 0))$:

$$
((0,0),(0,0)) \quad \xrightarrow{2,3} (0,1),(0,0))
$$

\n
$$
\xrightarrow{3,1} (0,1),(1,0))
$$

\n
$$
\xrightarrow{1,4} (2/3,1/3),(1,0))
$$

\n
$$
\xrightarrow{4,2} (2/3,1/3),(1/2,1/2))
$$

This is one of the paths followed by Lemke-Howson:

- First, choose which label to drop from $L(\sigma_1)$ (here we drop 2 from $L(0, 0)$, which adds exactly one new label (here 3)
- \triangleright Then always drop the *duplicit* label, i.e. the one labeling both nodes, until no duplicit label is present (then we have a Nash equilibrium) **134**

Lemke-Howson (Idea)

Lemke-Howson algorithm works as follows:

- \blacktriangleright Start in $(\sigma_1, \sigma_2) = (0^m, 0^n)$.
- ► Pick a label $k \in \{1, \ldots, m\}$ and drop it from $L(\sigma_1)$.

This adds a label, which then is the only element of $L(\sigma_1) \cap L(\sigma_2)$.

- ► loop
	- \triangleright If $L(\sigma_1) \cap L(\sigma_2) = \emptyset$, then stop and return (σ_1, σ_2) .
	- ► Let $\{\ell\} = L(\sigma_1) \cap L(\sigma_2)$, drop ℓ from $L(\sigma_2)$. This adds exactly one label to $L(\sigma_2)$.
	- ► If $L(\sigma_1) \cap L(\sigma_2) = \emptyset$, then stop and return (σ_1, σ_2) .
	- ► Let $\{k\} = L(\sigma_1) \cap L(\sigma_2)$, drop k from $L(\sigma_1)$. This adds exactly one label to $L(\sigma_1)$.

Lemma 51

The algorithm proceeds through every vertex of $H_1 \times H_2$ at most once. Indeed, if (σ_1, σ_2) is visited twice (with distinct predecessors), then either σ_1 , or σ_2 would have (at least) two neighbors reachable by dropping the label $k \in L(\sigma_1) \cap L(\sigma_2)$, a contradiction with non-degeneracy.

Hence the algorithm stops after at most $\binom{m+n}{m}\binom{m+n}{n}$ iterations.

The previous description of the LH algorithm does not specify how to compute the graphs H_1 and H_2 and how to implement the dropping of labels.

In particular, it is not clear how to identify fully labeled strategies and "transitions" between them.

The complete algorithm relies on a reformulation which allows us to unify fully labeled strategies (i.e. vertices of H_1 and H_2) with vertices of certain convex polytopes.

The edges of H_1 and H_2 will correspond to edges of the polytopes.

This also gives a fully algebraic procedure for dropping labels.

Convex Polytopes

- A convex combination of points $o_1, \ldots, o_i \in \mathbb{R}^k$ is a point λ_1 o₁ + \cdots + λ_i o_i where $\lambda_i \geq 0$ for each i and $\sum_{j=1}^i \lambda_j = 1$.
- A convex polytope determined by a set of points o_1, \ldots, o_i is a set of all convex combinations of o_1, \ldots, o_i .
- \triangleright A hyperplane h is a supporting hyperplane of a polytope P if it has a non-empty intersection with P and one of the closed half-spaces determined by h contains P.
- \triangleright A face of a polytope P is an intersection of P with one of its supporting hyperplanes.
- \triangleright A vertex is a 0-dimensional face, an edge is a 1-dim. face.
- \blacktriangleright Two vertices are *neighbors* if they lie on the same edge (they are endpoints of the edge).
- ▶ A polyhedron is an intersection of finitely many closed half-spaces

It is a set of solutions of a system of finitely many linear inequalities

► **Fact:** Each bounded polyhedron is a polytope, each polytope is a bounded polyhedron. **137** a bounded polyhedron.

Characterizing Nash Equilibria

Let us return back to Lemma 42:

 $(\sigma_1, \sigma_2) = (\sigma(1), \ldots, \sigma(m+n))$ is a Nash equilibrium iff

- For all $\ell = m + 1, \ldots, m + n : u_2(\sigma_1, \ell) \le u_2(\sigma_1, \sigma_2)$ and either $\sigma(\ell) = 0$, or $u_2(\sigma_1, \ell) = u_2(\sigma_1, \sigma_2)$
- For all $k = 1, \ldots, m : u_1(k, \sigma_2) \le u_1(\sigma_1, \sigma_2)$ and either $\sigma(k) = 0$, or $u_1(k, \sigma_2) = u_1(\sigma_1, \sigma_2)$

Now using the fact that

$$
u_2(\sigma_1,\ell)=\sum_{k=1}^m \sigma(k)u_2(k,\ell)
$$

and

$$
u_1(k,\sigma_2)=\sum_{\ell=m+1}^{m+n}\sigma(\ell)u_1(k,\ell)
$$

we obtain ...

$$
(\sigma_1, \sigma_2) = (\sigma(1), \ldots, \sigma(m+n))
$$
 is a Nash equilibrium iff

$$
\blacktriangleright \text{ For all } \ell = m+1,\ldots,m+n,
$$

$$
\sum_{k=1}^{m} \sigma(k) \cdot u_2(k,\ell) \leq u_2(\sigma_1,\sigma_2)
$$
\n(3)

and either $\sigma(\ell) = 0$, or the ineq. (3) holds with equality.

$$
\blacktriangleright
$$
 For all $k = 1, ..., m$,

$$
\sum_{\ell=m+1}^{m+n} \sigma(\ell) \cdot u_1(k,\ell) \le u_1(\sigma_1,\sigma_2) \tag{4}
$$

and either $\sigma(k) = 0$, or the ineq. (4) holds with equality.

Dividing (3) by $u_2(\sigma_1, \sigma_2)$ and (4) by $u_1(\sigma_1, \sigma_2)$ we get ...

 $(\sigma_1, \sigma_2) = (\sigma(1), \ldots, \sigma(m+n))$ is a Nash equilibrium iff

$$
\blacktriangleright
$$
 For all $\ell = m+1,\ldots,m+n$,

$$
\sum_{k=1}^{m} \frac{\sigma(k)}{u_2(\sigma_1, \sigma_2)} u_2(k, \ell) \le 1
$$
\n(5)

and either $\sigma(\ell) = 0$, or the ineq. (7) holds with equality.

For all
$$
k = 1, \ldots, m
$$
,

$$
\sum_{\ell=m+1}^{m+n} \frac{\sigma(\ell)}{u_1(\sigma_1, \sigma_2)} u_1(k, \ell) \le 1
$$
 (6)

and either $\sigma(k) = 0$, or the ineq. (8) holds with equality.

Considering each $\sigma(k)/u_2(\sigma_1, \sigma_2)$ as an unknown value $x(k)$, and each $\sigma(\ell)/u_1(\sigma_1, \sigma_2)$ as an unknown value $y(\ell)$, we obtain ...

... constraints in variables $x(1),...,x(m)$ and $y(m+1),...,y(m+n)$:

$$
\blacktriangleright
$$
 For all $\ell = m+1, \ldots, m+n$,

$$
\sum_{k=1}^{m} x(k) \cdot u_2(k,\ell) \le 1 \tag{7}
$$

and either $y(\ell) = 0$, or the ineq. (7) holds with equality.

For all
$$
k = 1, \ldots, m
$$
,

$$
\sum_{\ell=m+1}^{m+n} y(\ell) \cdot u_1(k,\ell) \le 1 \tag{8}
$$

and either $x(k) = 0$, or the ineq. (8) holds with equality.

For all non-negative vectors $x \ge 0^m$ and $y \ge 0^n$ that satisfy the above contraints we have that (\bar{x}, \bar{y}) is a Nash equilibrium.

Here the strategy \bar{x} is defined by $\bar{x}(k) := x(k)/\sum_{i=1}^{m} x(i)$, the strategy \bar{y} is defined by $\bar{y}(\ell):=y(\ell)/\sum_{j=m+1}^{\bar{m}+n}y(j)$ Given a Nash equilibrium $(\sigma_1, \sigma_2) = (\sigma(1), \ldots, \sigma(m+n))$, assigning $x(k) := \sigma(k)/u_1(\sigma_1, \sigma_2)$ for $k \in S_1$, and $y(\ell) := \sigma(\ell)/u_1(\sigma_1, \sigma_2)$ for $\ell \in S_2$ satisfies the above constraints. 141

Let us extend the notion of expected payoff a bit.

Given $\ell = m + 1, ..., m + n$ and $x = (x(1), ..., x(m)) \in [0, \infty)^m$ we define

$$
u_2(x,\ell)=\sum_{k=1}^m x(k)\cdot u_2(k,\ell)
$$

Given $k = 1, ..., m$ and $y = (y(m + 1), ..., y(m + n)) \in [0, \infty)^n$ we define

$$
u_1(k,y)=\sum_{\ell=m+1}^{m+n}y(\ell)\cdot u_1(k,\ell)
$$

So the previous system of constraints can be rewritten succinctly:

- ► For all $\ell = m + 1, \ldots, m + n$ we have that $u_2(x, \ell) \leq 1$ and either $y(\ell) = 0$, or $u_2(x, \ell) = 1$.
- ► For all $k = 1, \ldots, m$ we have that $u_1(k, y) \leq 1$, and either $x(k) = 0$, or $u_1(k, y) = 1$

Geometric Formulation

Define

$$
P := \{x \in \mathbb{R}^m \mid (\forall k \in S_1 : x(k) \geq 0) \wedge (\forall \ell \in S_2 : u_2(x, \ell) \leq 1)\}
$$

 $Q := \{ y \in \mathbb{R}^n \mid (\forall k \in S_1 : u_1(k, y) \le 1) \land (\forall \ell \in S_2 : y(\ell) \ge 0) \}$

P and Q are convex polytopes.

As payoffs are positive and linear in their arguments, P and Q are bounded polyhedra, which means that they are convex hulls of "corners", i.e., they are polytopes.

We label points of P and Q as follows:

$$
\blacktriangleright L(x) = \{k \in S_1 \mid x(k) = 0\} \cup \{\ell \in S_2 \mid u_2(x, \ell) = 1\}
$$

$$
\blacktriangleright L(y) = \{k \in S_1 \mid u_1(k, y) = 1\} \cup \{\ell \in S_2 \mid y(\ell) = 0\}
$$

Proposition 4

For each point $(x, y) \in P \times Q \setminus \{(0, 0)\}\)$ such that $L(x) \cup L(y) = \{1, \ldots, m+n\}$ we have that the corresponding strategy profile (\bar{x}, \bar{y}) is a Nash equilibrium. Each Nash equilibrium is obtained this way.

Geometric Formulation

Without proof: Non-degeneracy of G implies that

- For all $x \in P$ we have $L(x) \leq m$.
- \triangleright x is a vertex of P iff $|L(x)| = m$

(That is, vertices of P are exactly points incident on exactly m faces)

- For two distinct vertices x, x' we have $L(x) \neq L(x')$.
- Every vertex of P is incident on exactly m edges; in particular, for each $k \in L(x)$ there is a unique (neighboring) vertex x' such that $L(x) \cap L(x') = L(x) \setminus \{k\}.$

Similar claims are true for Q (just substitute m with n and P with Q).

Define a graph $H_1 = (V_1, E_1)$ where V_1 is the set of all vertices x of P and $\{x, x'\} \in E_1$ iff $L(x) \cap L(x') = L(x) \setminus k$.

Define a graph $H_2 = (V_2, E_2)$ where V_2 is the set of all vertices y of Q and $\{y, y'\} \in E_2$ iff $L(y) \cap L(y') = L(y) \setminus k$.

The notions of dropping and adding labels from and to, resp., remain the same as before.

Lemke-Howson (Algorithm)

Lemke-Howson algorithm works as follows:

- \triangleright Start in $(x, y) := (0^m, 0^n) \in P \times Q$.
- ► Pick a label $k \in \{1, \ldots, m\}$ and drop it from $L(x)$.

This adds a label, which then is the only element of $L(x) \cap L(y)$.

- ► loop
	- ► If $L(x) \cap L(y) = \emptyset$, then stop and return (x, y) .
	- ► Let $\{\ell\} = L(x) \cap L(y)$, drop ℓ from $L(y)$. This adds exactly one label to $L(\sigma_2)$.
	- ► If $L(x) \cap L(y) = \emptyset$, then stop and return (x, y) .
	- ► Let $\{k\} = L(x) \cap L(y)$, drop k from $L(x)$. This adds exactly one label to $L(x)$.

Lemma 52

The algorithm proceeds through every vertex of $H_1 \times H_2$ at most once.

Hence the algorithm stops after at most $\binom{m+n}{m}\binom{m+n}{n}$ iterations.

How to effectively move between vertices of $H_1 \times H_2$? That is how to compute the result of dropping a label?

We employ so called *tableau method* with an appropriate pivoting.

Slack Variables Formulation

Recall our succinct characterization of Nash equilibria:

- ► For all $\ell = m+1,\ldots,m+n$ we have that $u_2(x,\ell) \leq 1$ and either $y(\ell) = 0$, or $u_2(x, \ell) = 1$.
- ► For all $k = 1, ..., m$ we have that $u_1(k, y) \leq 1$, and either $x(k) = 0$, or $u_1(k, y) = 1$

We turn this into a system o equations in variables $x(1),...,x(m)$, $y(m + 1), \ldots, y(m + n)$ and slack variables $r(1), \ldots, r(m)$, $z(m + 1), \ldots, z(m + n)$:

$$
u_2(x, \ell) + z(\ell) = 1 \qquad \qquad \ell \in S_2
$$

\n
$$
u_1(k, y) + r(k) = 1 \qquad \qquad k \in S_1
$$

\n
$$
x(k) \ge 0 \qquad y(\ell) \ge 0 \qquad \qquad k \in S_1, \ell \in S_2
$$

\n
$$
r(k) \ge 0 \qquad z(\ell) \ge 0 \qquad \qquad k \in S_1, \ell \in S_2
$$

\n
$$
x(k) \cdot r(k) = 0 \qquad y(\ell) \cdot z(\ell) = 0 \qquad k \in S_1, \ell \in S_2
$$

Solving this is called linear complementary problem (LCP).

Tableaux

The LM algorithm represents the current vertex of $H_1 \times H_2$ using a tableau defined as follows.

Define two sets of variables:

$$
M := \{x(1),...,x(m),z(m+1),...,z(m+n)\}
$$

$$
N := \{r(1),...,r(m),y(m+1),...,y(m+n)\}
$$

A basis is a pair of sets of variables $M \subseteq \mathcal{M}$ and $N \subseteq \mathcal{N}$ where $|M| = n$ and $|N| = m$.

Intuition: Labels correspond to variables that are not in the basis

A tableau T for a given basis (M, N) :

$$
P: \quad v = c_{v} - \sum_{v' \in \mathcal{M} \setminus M} a_{v'} \cdot v' \qquad v \in M
$$

$$
Q: \quad w = c_{w} - \sum_{w' \in \mathcal{N} \setminus N} a_{w'} \cdot w' \qquad w \in N
$$

Here each c_v , $c_w \ge 0$ and $a_{v'}$, $a_{w'} \in \mathbb{R}$.

Note that the first part of the tableau corresponds to the polytope P, the second one to the polytope Q.

Tableaux implementation of Lemke-Howson

A basic solution of a tableau T is obtained by assigning zero to non-basic variables and computing the rest. During a computation of the LM algorithm, the basic solutions will correspond to vertices of the two polytopes P and Q.

Initial tableau:

$$
M = \{z(m+1), \ldots, z(m+n)\} \text{ and } N = \{r(1), \ldots, r(m)\}
$$

$$
P: \quad z(\ell) = 1 - \sum_{k=1}^m x(k) \cdot u_2(k,\ell) \qquad \qquad \ell \in S_2
$$

Q:
$$
r(k) = 1 - \sum_{\ell=m+1}^{m+n} y(\ell) \cdot u_1(k,\ell)
$$
 $k \in S_1$

Note that assigning 0 to all non-basic variables we obtain $x(k) = 0$ for $k = 1, ..., m$ and $y(\ell) = 0$ for $\ell = m + 1, ..., m + n$.

So this particular tableau corresponds to $(0^m, 0^n)$.

Note that non-basic variables correspond precisely to labels of $(0^m, 0^n)$.

Lemke-Howson – Pivoting

Given a tableau T during a computation:

$$
P: \quad v = c_{v} - \sum_{v' \in M \setminus M} a_{v'} \cdot v' \qquad v \in M
$$

$$
Q: \quad w = c_{w} - \sum_{w' \in N \setminus N} a_{w'} \cdot w' \qquad w \in N
$$

Dropping a label corresponding to a variable $\bar{v} \in \mathcal{M} \setminus \mathcal{M}$ (i.e. dropping a label in P) is done by adding \bar{v} to the basis as follows:

► Find an equation $v = c_v - \sum_{v' \in \mathcal{M} \setminus \mathcal{M}} a_{v'} \cdot v'$, with minimum $c_v/a_{\bar{v}}$. Here $c_v \neq 0$, and we assume that if $a_{\bar{v}} = 0$, then $c_v/a_{\bar{v}} = \infty$

$$
\blacktriangleright M := (M \setminus \{v\}) \cup \{\bar{v}\}\
$$

▶ Reorganize the equation so that \bar{v} is on the left-hand side:

$$
\bar{v} = \frac{c_v}{a_{\bar{v}}} - \sum_{v' \in \mathcal{M} \smallsetminus M, v' \neq v} \frac{a_{v'}}{a_{\bar{v}}} \cdot v' - \frac{v}{a_{\bar{v}}}
$$

 \triangleright Substitute the new expression for v to all other equations. Dropping labels in Q works similarly.

The previous slide gives a procedure for computing one step of the LH algorithm.

The computation ends when:

- \blacktriangleright For each complementary pair $(x(k), r(k))$ one of the variables is in the basis and the other one is not
- \blacktriangleright For each complementary pair $(y(\ell), z(\ell))$ one of the variables is in the basis and the other one is not

Lemke-Howson – Example

Initial tableau ($M = \{z(3), z(4)\}, N = \{r(1), r(2)\}\)$:

$$
z(3) = 1 - x(1) \cdot 1 - x(2) \cdot 3 \tag{9}
$$

$$
z(4) = 1 - x(1) \cdot 2 - x(2) \cdot 1 \tag{10}
$$

$$
r(1) = 1 - y(3) \cdot 3 - y(4) \cdot 2 \tag{11}
$$

$$
r(2) = 1 - y(3) \cdot 2 - y(4) \cdot 3 \tag{12}
$$

Drop the label 2 from P: The minimum ratio 1/3 is in (9).

$$
x(2) = 1/3 - (1/3) \cdot x(1) - (1/3) \cdot z(3) \tag{13}
$$

$$
z(4) = 2/3 - (5/3) \cdot x(1) - (1/3) \cdot z(3) \tag{14}
$$

$$
r(1) = 1 - y(3) \cdot 3 - y(4) \cdot 2 \tag{15}
$$

$$
r(2) = 1 - y(3) \cdot 2 - y(4) \cdot 3 \tag{16}
$$

Here $M = \{x(2), z(4)\}, N = \{r(1), r(2)\}.$

Drop the label 3 from Q: The minimum ratio 1/3 is in (15).

Lemke-Howson – Example (Cont.)

$$
x(2) = 1/3 - (1/3) \cdot x(1) - (1/3) \cdot z(3) \tag{17}
$$

$$
z(4) = 2/3 - (5/3) \cdot x(1) - (1/3) \cdot z(3) \tag{18}
$$

$$
y(3) = 1/3 - (2/3) \cdot y(4) - (1/3) \cdot r(1) \tag{19}
$$

$$
r(2) = 1/3 - (5/3) \cdot y(4) - (1/3) \cdot r(1) \tag{20}
$$

Here $M = \{x(2), z(4)\}, N = \{y(3), r(2)\}.$

Drop the label 1: The minimum ratio $\left(\frac{2}{3}\right)/\left(\frac{5}{3}\right) = \frac{2}{5}$ is in (18).

$$
x(2) = 1/5 - (4/15) \cdot z(3) - (1/5) \cdot z(4) \tag{21}
$$

$$
x(1) = 2/5 - (1/5) \cdot z(3) - (3/5) \cdot z(4)
$$

\n
$$
y(3) = 1/3 - (2/3) \cdot y(4) - (1/3) \cdot r(1)
$$
\n(23)

$$
r(2) = 1/3 - (5/3) \cdot y(4) - (1/3) \cdot r(1) \tag{24}
$$

Here $M = \{x(2), x(1)\}, N = \{y(3), r(2)\}.$

Drop the label 4: The minimum ratio 1/5 is in (24).

Lemke-Howson – Example (Cont.)

$$
x(2) = 1/5 - (4/15) \cdot z(3) - (1/5) \cdot z(4) \tag{25}
$$

$$
x(1) = 2/5 - (1/5) \cdot z(3) - (3/5) \cdot z(4) \tag{26}
$$

$$
y(3) = 1/5 - (1/5) \cdot r(1) - (6/15) \cdot r(2) \tag{27}
$$

$$
y(4) = 1/5 - (1/5) \cdot r(1) - (3/5) \cdot r(2) \tag{28}
$$

Here $M = \{x(2), x(1)\}, N = \{y(3), y(4)\}\$ and thus

- \triangleright x(1) ∈ *M* but r(1) ∉ *N*
- \triangleright x(2) ∈ *M* but r(2) ∉ *N*
- \blacktriangleright y(3) \in N but z(3) \notin M
- \blacktriangleright y(4) \in N but z(4) \notin M

So the algorithm stops.

Assign $z(3) = z(4) = r(1) = r(2) = 0$ and obtain the following Nash equilibrium:

$$
x(1) = 2/5, \quad x(2) = 1/5, \quad y(3) = 1/5, \quad y(4) = 1/5
$$