Dynamic Games of Complete Information
Repeated Games
Infinitely Repeated Games
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Infinitely Repeated Games

Let G = ({1,2},(S1, S2), (uy, u2)) be a strategic-form game of two
players.

An infinitely repeated game Gjs, based on G proceeds in stages so
that in each stage, say t, players choose a strategy profile

s' = (s!,s)).

Recall that a history of length t > 0 is a sequence h = s’ ... st € S! of
t strategy profiles. Denote by H(t) the set of all histories of length t.

A pure strategy for player i in the infinitely repeated game Giep is
a function

0

| JH() - S

t=0
which for every possible history chooses a next step for player i.

Every pure strategy profile T = (71, 72) in Giep induces a sequence of
pure strategy profiles w, = s's*--- in G so that s = 7;(s'---s'").

(Here for t = 0 we have that s'---st™! =¢.)
246



Infinitely Repeated Games & Discounted Payoff

Let 7 = (74, 72) be a pure strategy profile in Gjp, such that
w, =s's?-..

Given 0 < 6 < 1, we define a 6-discounted payoff by

(0.9)

U (t) = (1-06) ) 6" ui(s™")

t=0

Given a strategic-form game G and 0 < 6 < 1, we denote by Gfrep the
infinitely repeated game based on G together with the 6-discounted

payoffs.
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Infinitely Repeated Games & Discounted Payoff

Definition 78
A strategy profile T = (71, 72) is a Nash equilibrium in G°__ if for both

irep
i € {1,2} and for every 7} we have that

o
i

o

u’(ti, t—j) = Ui(T;,T_,')

Given a history h = s' --- st and a strategy 7, of player i, we define
a strategy 7/ in the infinitely repeated game Girep by

17(51--@?):1;(33.-3 t

's1...8")  for every sequence §'---5

(i.e. " behaves as 1; after h)

Now 7 = (71, 72) is a SPE in Gfrep if for every history h we have that
(7], 77) is a Nash equilibrium.

Note that (zf, 75) must be a NE also for all histories h that are not visited
when the profile (74, 72) is used.
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Example

Consider the infinitely repeated game G, based on Prisoner’s
dilemma:

C S
C | -5-5|0,-20
S | -20,0 | -1,-1

What are the Nash equilibria and SPE in G°

i ?
irep for a given 6 “

Consider a pure strategy profile (71, 72) where t;(s’---s™) = C for alll
T>1andie€{1,2}. Isita NE? A SPE?

Consider a "grim trigger" profile (74, 72) where

(S T=0
ti(s'---sT)={8 sf=(S,S)forall1<f<T
C otherwise

Isita NE? Is it a SPE?
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One-Shot Deviation Principle

A pure strategy profile T = (71, 72) in Giep satisfies one-shot deviation

property in Gérep if for every i € {1,2} and every T, differing from t; just

on a single history h, we have u®(t!, 1) < wo (<}, 77).

Theorem 79

Let G = ({1,2}, (51, S2), (u1, U2)) be a two-player strategic-form game
such that both uy and u> are boundedon S = S x S,. Let0 < 6 < 1.
A pure strategy profile © = (t1,72) in Girep is @ SPE in G°__ iff

irep
it satisfies the one-shot deviation property in Gfrep

Before proving Theorem 79, let us note the following:

» The one shot deviation property is concerned with all strategies
7; that differ from 7; on a single history. This means that we have
to consider all histories h, even those that can not be visited
using t; with any opponent.

» The one-shot deviation property immediately implies

the following: If T; does not ditfer from ; on any history of

the form h’ = hh” where h” # ¢ (i.e., on any history obtained by
prolonging h), then u®(7", 1}) < Ué(T?,Tg)

Indeed, note that " differs from 7/ only on h.

250



One-Shot Deviation Principle

Proof. =: Trivial.

&: Assume that 7 satisfies the one-shot deviation property but is not
a SPE. That is, a deviation may increase payoff of one of the players
In a subgame. Assume, w.l.0.g., that player 1 gains by deviation to

a strategy 71 in a subgame starting with a h, i.e.,

U; °(zh, ) > U °(zh, h) (29)

Since 6 < 1 and u; are bounded on S, we may safely choose 74 so
that 71(h’) = t4(h’) for all sufficiently long histories h’.

Indeed, since u; is bounded on pure strategies of G, the sum Y7, 6! - u;j(st™)
goes to 0 as ¢ goes to co; hence the strict inequality (29) remains valid even if

T4 Is arbitrarily modified in a very distant future.
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One-Shot Deviation Principle

Let h’ be a history of maximum length such that h is a prefix of h’ and
T1(h") # t1(h’). (Note that then 7, (h’h”") = t4(h’h”’) for all h” # ¢.)

Let 711 be a strategy of player 1 obtained from 74 by changing 71(h’)
to 71(h’). Now note that the one-shot deviation property implies, that

5= H 5 0 h 5=, I
Ui (T4, 75 ) = Uiy, 15 ) 2 U5(T4, 73

5(=h h 5(=h h 5(rh —h —h
and thus ui(77,, 75) = Uj(7{,75) > ui(7{, 75). Note that 77, has

a strictly smaller number of deviations from " than 7.

Repeating the same argument with 741 in place of 71 we obtain 745

5(=h h 5(=h h 5(rh —h —h
such that uj(77,, 75) > uj(7{,,75) > Ui(7{, 75). Here TJ, has even less

deviations from T? than %?1.

Then repeating with 71, in place of 71 we obtain 713 such that

5(=h —h 5(=h h 5(rh —h - -
U (s, ) = U (T, T5) > US(TY, 75), etc., still decreasing the number

of deviations from 1’17.

Eventually, as 7/ has only finitely many deviations from 7", we get

=h _ .h S(wh —hY _ 5(zh ~h 5(rh h
7], = 74 for some k and thus ui (77, 75) = ui(7y,, 15) > Ui (7{,75),

a contradiction. O
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Example

Consider the infinitely repeated game based on Prisoner’s dilemma:

C S
C | -5-51]0,-20
S | -20,0 | -1,-1

The grim trigger profile (74, 72) where

(S T=0
ti(s'---s") =08 sl =(S,S)forall1<e<T
C otherwise
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A Simple Version of Folk Theorem

Let G = ({1,2},(S1,S2), (U1, U2)) be a two-player strategic-form game
where uq, Us are bounded on § = §; X S, (but S may be infinite) and
let s* be a Nash equilibrium in G.

Let s be a strategy profile in G satisfying u;(s) > u;(s*) for all i € N.

Consider the following grim trigger for s using s* strategy profile
T = (T‘],Tz) |n Girep Where

(S,' T=0

Ti(s'---s")={s; sf=sforall1<e<T

\s,.* otherwise

Then for
MaXses; U,'(Si', S_,') — U,'(S)

0 = max
i€{1,2) MaXs/es; U,'(Si', S_,') — U,'(S*)

we have that (71, 72) is a SPE in Gﬁep and u°(7) = ui(s).

Proof: Consider a possible one-shot deviation 71 of player 1, i.e.,
there is exactly one h such that 71(h) # t1(h). We distinguish two
cases depending on h. 054



Proof of Simple Folk Theorem (Cont.)

Case 1: h #s---s. Then there is a deviation from s in h and thus
according to (77, 1) both players play s* forever :

w(th, )y =(1-6 Z(S"m(s ) = uy (s°)( 1—6)Zék—u1

Now ({,77) gives a sequence Wz .n) = (8], 5;)s°s" - where s is
a strategy of player 1 to which he deviates after h.

Here player 2 plays s; all the time after h because one of the players has
already deviated in h.

We obtain

( 0o )

ui (7, t5) = (1 = 6)|ui (s}, s3) + Zékm(s
\ —

( 00 )

<(1-0)|ui(s;,s5) + Z 5kU1(S*)

\ k=1 y

= Uy(s7)

So this deviation cannot be beneficial no matter what 6 is.
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Proof of Simple Folk Theorem (Cont.)

Case 2: h=s---s. Clearly, us(7!,73) = us(s).

Now ({,77) gives a sequence Wz .n) = (], 52)$°s" -+ where s is
a strategy of player 1 to which he deviates after h.

As opposed to the previous case, here player 2 first plays s, (since

the deviation of player 1 to s! is the first deviation in the history) and then

both players react by playing s* forever.

If ui(s],s2) < uy(s), then

( 00 \
(T, t8) = (1-06)|ui(s}, 82) + ) oFun(s")
\ k=
( 00
<(1-0) U1(S1,Sz)+Z(S"U1(s

<(1—5) +Z(S"u1 )= ui(s) = Wi (", 2h)

and thus this deviation is also not beneficial no matter what 6 is.
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Proof of Simple Folk Theorem (Cont.)

Finally, if us(s3,s2) > ui(s), then

W@, th) = (1 -06) | us(s], s2) + Z ok uy(sY)
k—1

k=0

= U1(S],82) — 0 - u1(s],82) + 0 - uy(s)
Thus
wo (7", 5) < ud(7h, 15) = uq(s) iff
U1(87,82) — 0 - Uy(S],82) +0-ui(s™) < uy(s) iff
u1(s],S2) — u1(s) < 6 (us(sy,s2) — uy(s”)) iff

ui(s;,s>)— uq(s
5 1(,1 2) — U1(S)
U1 (S1, Sg) — U (S*)

257



Proof of Simple Folk Theorem (Cont.)

Thus (74, T2) satisfies the one-shot deviation property in Gfrep w.r.t.
player 1 if
UA (S;, Sg) — U4 (S)
5> ——
U1 (S1 , Sg) — Ujq (S*)

for all s7 € Sy satisfying uq(s], S2) > u4(s)

Note that the right-hand-side expression is maximized when
u1(s;, S2) is maximized and thus we get

maxsqe& UA (S;, Sg) — U4 (S)

6 2 / *
maques1 UA (51, Sg) — UA{ (S )

Proving the same for player 2 and putting the results together, we

obtain that (71, 7o) satisfies the one-shot deviation property in Gfrep if

MaXges, U,'(Si', S_,') — U,'(S)

O > max

30

Thus by Theorem 79, (14, 72) is a SPE in G?rep if 6 satisfies ineq. (30).
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Simple Folk Theorem — Example

Consider the infinitely repeated game G, based on the following

game G:
m f r
M | 4,4 -1,5 | 3,0
F |5 -1 1,1 0,0
R | 0,3 0,0 2,2
NEinG: (F,f)

Consider the grim trigger for (M, m) using (F, f), i.e., the profile
(T‘], TZ) |n Girep Where
» 71 : Plays M in a given stage if (M, m) was played in all previous
stages, and plays F otherwise.
> 75 : Plays min a given stage if (M, m) was played in all previous
stages, and plays f otherwise.

Thisis a SPE in G°__forall 6 > I. Also, uij(ty,72) =4 forie{1,2}.

irep

Are there other SPE? Yes, a grim trigger for (R, r) using (F,f). This is
a SPEin G) for 6 > 1.
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Tacit Collusion

Consider the Cournot duopoly game model G = (N, (S;).cn, (Ui)icn)
» N={1,2}
> S,‘ — [O, K]

> ur(g1,92) = qi(K = Q1 — G2) = Q1C1 = (k= C1)G1 — Q7 — G1 Q2
U2(q1, G2) = Ga(k — G2 = G1) — G2C2 = (k — C2)q2 — Q3 — G201

Assume for simplicity that ¢, = ¢ = ¢ and denote 6 = x — c.

If the firms sign a binding contract to produce only 6/4, their profit
would be 62/8 which is higher than the profit 62/9 for playing the NE
(0/3,0/3).

However, such contracts are forbidden in many countries (including
us).

s it still possible that the firms will behave selfishly (i.e. only
maximizing their profits) and still obtain such payoffs?

In other words, is there a SPE in the infinitely repeated game based

on G (with a discount factor 6) which gives the payoffs 62/8 ?
260



Tacit Collusion

Consider the Cournot duopoly game model G = (N, (S;)icn, (Ui)icn)
> N=1{1,2]
> SI — [O, OO)

> ur(g1,Q2) = qi(xk = g1 — G2) — Q11 = (K = C1)G1 — GF — G1 Q2
U2(G1,G2) = Ge(k — Q2 — Q1) — G2C2 = (k — C2)Q2 — G5 — Qa0

Assume for simplicity that ¢ = ¢ = ¢ and denote 6 = x — c.

Consider the grim trigger profile for (6/4,6/4) using (6/3,0/3) :
Player i will

» produce q; = 0/4 whenever all profiles in the history are
(6/4,0/4),

» whenever one of the players deviates, produce 6/3 from that
moment on.

Assuming that «k = 100 and ¢ = 10 (which gives 6 = 90), this is
a SPE G°_ for 6 >0.5294---. It results in (0/4,0/4)(0/4,0/4) - -

irep
with the discounted payoffs 62/8.
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Dynamic Games of Complete Information
Repeated Games
Infinitely Repeated Games
Long-Run Average Payoff and Folk Theorems
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Infinitely Repeated Games & Average Payoff

In what follows we assume that all payoffs in the game G are
positive and that S is finite!

Let T = (71, T2) be a strategy profile in the infinitely repeated game
Girep SUCh that WrL— — S1 82 MR

Definition 80
We define a long-run average payoff for player i by

(Here lim sup Is necessary because 7; may cause non-existence of the limit.)
The lon-run average payoff u® (1) is well-defined if the limit

i
u?(1) = limroe L X1, ui(s?) exists.

Given a strategic-form game G, we denote by Giar;g the infinitely
repeated game based on G together with the long-run average

payoff.
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Infinitely Repeated Games & Average Payoff

Definition 81
A strategy profile T is a Nash equilibrium if u-"?(7) is well-defined for

all i € N, and for every i and every t; we have that

avg

U;

avg

(ti,7=i)) = U

| (T;’ T_I)

(Note that we demand existence of the defining limit of u™(;, 7_;) but

the limit does not have to exist for u™"?(z/, 7_;).)

Moreover, T = (14,72) is a SPE in Giargg if for every history h we have

that (7f, 7J) is a Nash equilibrium.
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Example

Consider the infinitely repeated game based on Prisoner’s dilemma:

C S
C | -5-51]0,-20
S | -20,0 | -1,-1

The grim trigger profile (741, 72) where

(S T=0
ti(s'---s") =08 sl =(S,S)forall1<é<T
C otherwise

is a SPE which gives the long-run average payoff —1 to each player.

The intuition behind the grim trigger works as for the discounted payoff:
Whenever a player i deviates, the player —i starts playing C for which the best
response of player i is also C. So we obtain
(S,S)---(S,S)(X,Y)C,C)(C,C)--- (here (X,Y)is either (C,S) or (S, C)
depending on who deviates). Apparently, the long-run average payoff is —5

for both players, which is worse than —1.
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Example

Consider the infinitely repeated game based on Prisoner’s dilemma:
C S

C [ -5-51]0,-20
S | -20,0 | -1,-1

However, other payoffs can be supported by NE. Consider e.g.
a strategy profile (71, 72) such that

» Both players cyclically play as follows:
> 9times (S, S)
» once (S, C)

> |f one of the players deviates, then, from that moment on, both
play (C, C) forever.

Then (74, 712) is also SPE.

Apparently, u7"(tq,12) = 3% - (—1) 4+ (-20)/10 = —29/10 and

U?Vg(’ﬁ,Tg) — %(—1) = —9/10.

Player 2 gets better payoff than from the Pareto optimal profile (S, S)!
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Outline of the Folk Theorems

The previous examples suggest that other (possibly all?) convex
combinations of payoffs may be obtained by means of Nash
equilibria.

This observation forms a basis for a bunch of theorems, collectively
called Folk Theorems.

No author is listed since these theorems had been known in games
community long before they were formalized.

In what follows we prove several versions of Folk Theorem
concerning achievable payoffs for repeated games.

Ordered by increasing technical and conceptual difficulty, we consider
the following variants:

» Long-run average payoffs & SPE

» Discounted payoffs & SPE

» Long-run average payoffs & Nash equilibria
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Folk Theorems — Feasible Payoffs

Definition 82

We say that a vector of payoffs v = (vq, v») € IR? is feasible if it is

a convex combination of payoffs for pure strategy profiles in G with
rational coefficients, i.e., if there are rational numbers S, here s € S,
satisfying s > 0 and } ;.5 s = 1 such that for both i € {1,2} holds

vi= Y Bs- ui(s)

We assume that there is m € IN such that each g5 can be written in
the form s = ys/m.

The following theorems can be extended to a notion of feasible payoffs using
arbitrary, possibly irrational, coefficients S in the convex combination.
Roughly speaking, this follows from the fact that each real number can be
approximated with rational numbers up to an arbitrary error. However,

the proofs are technically more involved.
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Folk Theorems — Long-Run Average & SPE

Theorem 83
Let s* be a pure strategy Nash equilibrium in G and let v = (v4, v2) be
a feasible vector of payoffs satisfying v; > uj(s*) for both i € {1,2}.

Then there is a strategy profile t = (71, t2) In Gjep Such that
» 7isaSPEin G

irep

> u?(t) = v, forief{1,2)

Proof: Consider a strategy profile 7 = (71, 72) in Giep Which gives
the following behavior:

1. Unless one of the players deviates, the players play cyclically all
profiles s € S so that each s is always played for y¢ rounds.

2. Whenever one of the players deviates, then, from that moment
on, each player i plays s;.

It is easy to see that u;"?(1) = v;.
We verify that 7 is SPE.
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Folk Theorems — Long-Run Average & SPE

Fix a history h, we show that =" = ({,73) is a NE in G, .

» |f h does not contain any deviation from the cyclic behavior 1.,
then " continues according to 1., thus u’"?(z") = v..

» |f h contains a deviation from 1., then
W, =88 -

and thus u"?(t") = uj(s*).

> Now if a player i deviates to 7/ from 7" in Gfr‘gg, then

1 2 * 3 *
Wien vy = (8],87,)(87,87,)(s7,8%;) -

i’ =i

where s/, s?, ... are strategies of S; and s’ is a strat. of S_;.
However, then u7? (7", ") < ui(s*) < v; since s* is a Nash
equilibrium and thus u;(sf, s*;) < uj(s*) for all k > 1.

Intuitively, player —i punishes player i by playing s” .. O
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Folk Theorems — Discounted Payoffs & SPE

Theorem 84

Let s* be a pure strategy Nash equilibrium in G and let v = (v4, v») be
a feasible payoff satisfying v; > uj(s*) for both i € {1,2}. Then there is
a strategy profile T = (1, t2) in Gjep and 6 < 1 such that

» Tisa SPEin G _forevery® €[5,1) and

irep

> limy 1 U (1) = V.

Proof: The following claim allows us to reduce the discounted payoft
to the long-run-average.

Claim 5
Let © be a well-defined strategy profile. Then

: 0
Jim u;(7) = u: (1)

Now to prove Theorem 84, consider the strategy profile 7 = (71, 72) in
Girep from the proof of Theorem 83.

We check the one-shot deviation property in G?

irep for 6 close to 1.
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Folk Theorems — Discounted Payoffs & SPE

Fix a history h and consider 7" = (7", 1J).

> |f h does not contain any deviation from 1., then both players
follow 1., and u?(z") is close to u7?(z") = v; for 6 close to 1.

» |If h contains any deviation from 1., then w_.» = s*s*--- and

uP (") = ui(s*).

» Now assume, w.l.0.g., that player 1 deviates exactly after h,
which gives a strategy 7/ differing from " only on h. Thus
W(zh chy = = (87,8,)s"s"--- where s is a strategy of Sy and s; is
elther the next step in the cyclic behavior described by 1. (if h
follows 1.), or equal to s; (h does not follow 1.)

Note that for 6 close to 1, we have that u‘S(T, ,T" ) IS close to

U?VQ(TI , 1) = ui(s”).

~ If h follows 1., then u9(z") is close to vy which is greater
than u4(s*) to which u?(%?,f’z’) is close.
> If h does not follow 1., then s; = s (players punish due to
a deviation in h), and thus u5(7 ) <u(s) =ui(t"). o
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Folk Theorems — Individually Rational Payoffs

Definition 85
v = (vq, v») € R? is individually rational if for both i € {1,2} holds

Vi > min max U,'(S,', S_,')
S_ieS_; S,'ES,'

That is, v; is at least as large as the value that player i may secure by playing
best responses to the most hostile behavior of player —i.

Example:

m f r
M | 4,4 -1,5 | 3,0
F |5 -1 1.1 0,0
R 0,3 0,0 2,2

Here any (vy, v») such that v > 2 and v» > 1 is individually
rational.
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Folk Theorems — Long-Run Average & NE

Theorem 86
Let v = (vy4, v2) be a feasible and individually rational vector of
payoffs. Then there is a strategy profile T = (71, t2) in Gjep Such that

avg

» 7 is a Nash equilibrium in G,rep

» U9 (t)=v; forie{1,2)

|

Proof: It suffices to use a slightly modified strategy profile T = (11, 72)
in Gijrep from Theorem 83:

» Unless one of the players deviates, the players play cyclically all
profiles s € S so that each s is always played for y¢ rounds.

» Whenever a player | deviates, the opponent —i plays a strategy
sM" € argming g  MaXsges, Ui(Si, S-i).

It is easy to see that u;"?(1) = v;.

If a player i deviates, then his long-run average payoff cannot be
higher than ming_cs_. maxges. Ui(Sj, S-i) < Vi, so T is a NE. O
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Folk Theorems — Long-Run Average & NE

Theorem 87
If a strategy profile T = (t1,72) is a NE in G222, then ( (), uy”? (7))

irep’
Is individually rational.

Proof: Suppose that( u(t), USVQ(T)) is not individually rational.
W.Lo.g. assume that u;"(1) < ming,es, Maxs,es, U1(S1, S2).

Now let us consider a new strategy 74 such that for an arbitrary
history h the pure strategy 71(h) is a best response to t2(h).

But then, for every history h, we have

U1(7_,'1(h), ’Cg(h)) > mlg maSX U1(S1,Sg) > Uan(T)
S2€92 S1€

So clearly u"?(T1,t2) > u]*?(t) which contradicts the fact that (1, 72)

Is a NE. O
Note that if irrational convex combinations are allowed in the definition of
feasibility, then vectors of payoffs for Nash equilibria in Glfgg are exactly
feasible and individually rational vectors of payoffs. Indeed, the coefficients [
In the definition of feasibility are exactly frequencies with which the individual

profiles of S are played in the NE. 275



Folk Theorems — Summary

» We have proved that "any reasonable" (i.e. feasible and
individually rational) vector of payofts can be justified as payoffs
for a Nash equilibrium in G2¥ (where the future has "an infinite

irep
weight").

» Concerning SPE, we have proved that any feasible vector of
payoffs dominating a Nash equilibrium in G can be justified as
payoffs for SPE in G2

irep”
This result can be generalized to arbitrary feasible and strictly

individually rational payoffs by means of a more demanding
construction.

» For discounted payoffs, we have proved that an arbitrary feasible
vector of payoffs strictly dominating a Nash equilibrium in G can

be approximated using payoffs for SPE in Gfrep as 6 goes to 1.

Even this result can be extended to feasible and strictly individually
rational payoffs.

For a very detailed discussion of Folk Theorems see "A Course in
Game Theory" by M. J. Osborne and A. Rubinstein.
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