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ABSTRACT

Motivation: T-cell receptor (TCR) diversity in peripheral blood
has not yet been fully profiled with sequence level resolution.
Each T-cell clonotype expresses a unique receptor, generated by
somatic recombination of TCR genes and the enormous potential for
T-cell diversity makes repertoire analysis challenging. We developed
a sequencing approach and assembly software (immuno-SSAKE or
iSSAKE) for profiling T-cell metagenomes using short reads from the
massively parallel sequencing platforms.
Results: Models of sequence diversity for the TCR β-chain CDR3
region were built using empirical data and used to simulate, at
random, distinct TCR clonotypes at 1–20 p.p.m. Using simulated
TCRβ (sTCRβ) sequences, we randomly created 20 million 36 nt
reads having 1–2% random error, 20 million 42 or 50 nt reads
having 1% random error and 20 million 36 nt reads with 1% error
modeled on real short read data. Reads aligning to the end of
known TCR variable (V) genes and having consecutive unmatched
bases in the adjacent CDR3 were used to seed iSSAKE de novo
assemblies of CDR3. With assembled 36 nt reads, we detect over
51% and 63% of rare (1 p.p.m.) clonotypes using a random or
modeled error distribution, respectively. We detect over 99% of
more abundant clonotypes (6 p.p.m. or higher) using either error
distribution. Longer reads improve sensitivity, with assembled 42 and
50 nt reads identifying 82.0% and 94.7% of rare 1 p.p.m. clonotypes,
respectively. Our approach illustrates the feasibility of complete
profiling of the TCR repertoire using new massively parallel short
read sequencing technology.
Availability: ftp://ftp.bcgsc.ca/supplementary/iSSAKE
Contact: rwarren@bcgsc.ca
Supplementary information: Supplementary methods and data are
available at Bioinformatics online.

1 INTRODUCTION
Recognition of MHC (major histocompatibility complex)-presented
antigen by the T-cell receptor (TCR) is a pivotal process in cell-
mediated adaptive immunity. A vast TCR repertoire is required
to recognize the enormous diversity of potential antigens in the
environment. TCRs are heterodimers that consist predominantly
(90–99%) of an α and a β subunit (reviewed in Lefranc and Lefranc,
2001), the remainder consisting of γ–δ heterodimers. Each chain

∗To whom correspondence should be addressed.

(a TCR subunit is typically referred to as a chain) originates from
the genetic rearrangement of a variable (V), joining (J) and constant
(C) gene segment (Gascoigne et al., 1984; Hedrick et al., 1984).
Rearranged TCRβ DNA also includes a short (12–16 nt) diversity
(D) gene segment between the V and J gene (Fig. 1; Kavaler
et al., 1984). At the molecular level, two main mechanisms
contribute to generate the immense TCR sequence repertoire. Akin
to immunoglobulins, the combinatorial diversity of TCR arises from
the genetic rearrangement of V, D and J gene segments (Sakano et al.,
1979) and yields ∼5.8 × 106 possible TCRαβ gene combinations
(Janeway et al., 2001). Further diversity is generated during this
rearrangement by an additional mechanism of base addition and
deletion at the junction of V, (D) and J segments, and is known
as the N-diversity (Huck et al., 1988). Addition of nucleotides by
terminal deoxynucleotidyl transferases at the V–J (α) or V–D–J (β)
junction (Landau et al., 1984) occurs at random and is frequently
preceded by base deletion at the 3′ end of V, the 5′ end of J and at both
ends of D. This junctional diversity alone can generate ∼2 × 1011

distinct molecules, bringing the number of theoretically possible
TCRαβ to ∼1018 (Janeway et al., 2001). The actual number of
unique T-cell clonotypes in human blood is at least ∼107 (106β-
chains; Arstila et al., 1999). The amino acids encoded at the V–(D)–J
junction, a region known as the third complementarity determining
region (CDR3), are principally responsible for antigen recognition
and define unique TCR clonotypes (Gorski et al., 1994). Together,
these somatic genome alterations create a diverse T-cell metagenome
in every individual.

Profiling the cellular immune response to immune challenge
by, for example, vaccination, transplantation, infection or
cancer provides valuable insights into immune system integrity
and function and the efficacy of prophylactic or therapeutic
interventions. Unfortunately, the TCR diversity is such that
complete characterization of repertoires still represents an enormous
challenge. Current profiling methods, developed 15 years ago,
analyze TCR β-chain repertoire complexity based on the CDR3
length diversity within Vβ gene families (Gorski et al., 1994;
Pannetier et al., 1993; Penitente et al., 2008). Although they
provide a global picture of the repertoire, these low-resolution
PCR-based spectratypes do not allow specific identification and
quantification of individual T-cell clonotypes. DNA sequencing
achieves higher resolution, but large-scale sequence profiling has
been infeasible previously due to cost. For instance, sampling
1 million clonotypes (i.e. 10-fold coverage of 1 million 150 nt target
CDR3 sequences in a single individual) with traditional Sanger
sequencing would cost ∼$1.5 M. Newer sequencing technologies
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Profiling model T-cell metagenomes

Fig. 1. Schematic diagram of the ∼1 Mb human TCRβ locus on chromosome
7q34, showing the combinatorial gene rearrangement that takes place and the
iSSAKE strategy for assembling CDR3 (inset). The TCRβ locus comprises
a cluster of 54 predicted V genes located distantly from two separate clusters
each with one D and C gene, interspersed with 6 or 8 J genes. At the DNA
level, one of the D genes recombines with one of the J segments, creating
partially rearranged DJ genes. Second, one of the V genes joins DJ and the
intermediary DNA is deleted. During the gene rearrangements, the random
base addition at the junction of V, D and J and the frequent base deletion
at the 3′ end of V and 5′ end of the J gene yield the CDR3, a region with
unique immune specificities. Read assembly is preceded by the segregation
of assembly seeds (arrow); reads that align to the 3′ end of V with eight
or more consecutive unmatched 3′ bases. A possible contiguous sequence
(contig) resulting from that strategy is shown, with the CDR3-encoding
region highlighted in black.

capable of producing a large amount of short reads at much lower
cost have emerged in recent years (Bennett, 2004; Holt and Jones,
2008; Margulies et al., 2005) and make affordable TCR sequence
profiling a likely prospect. Currently, sampling a million TCR
clonotypes with the Illumina GAII Analyzer would cost ∼1000-fold
less compared to Sanger sequencing. On the flip side, next-
generation sequencing technologies have much shorter read lengths
and show appreciable base error (Holt and Jones, 2008). Combined,
these limitations pose a computational challenge for the accurate
and complete sequence reconstruction of specificity-determining
regions.

Using randomly generated error-prone short reads from simulated
TCRβ (sTCRβ) sequences, we have developed a strategy for
profiling T-cell metagenomes. The method uses iSSAKE, a modified
version of our previously published short read assembler SSAKE
(Warren et al., 2007), and relies on annotated Vβ gene predictions
to segregate partial 3′ alignments and sort corresponding seed
sequences prior to assembly (Fig. 1). In this proof-of-principle
study, we show that the method is over 63% sensitive for rare
1 p.p.m. clonotypes and over 91% sensitive for clonotypes as low
as 2 p.p.m., when using 36 nt reads with 1% randomly distributed
errors. When applying a modeled error distribution to simulated
reads, we show that the sensitivity of the method is reduced to 51%
for the rarest (1 p.p.m.) clonotypes, but is equally sensitive when
clonotype frequencies are above 5 p.p.m. The assembly of longer
read length impacts positively on the sensitivity of the method.
For instance, the method is nearly 12% and 25% more sensitive in
recovering 1 p.p.m. sTCRβ, when using 42 nt and 50 nt long reads
compared to 36 nt. Together with high base accuracy of over 99%,
we show that the majority of CDR3 sequences can be reconstructed
accurately and thus characterized using error-rich short read data.

Table 1. Frequency (f ) of base deletion and addition at the CDR3 between
publicly available mRNA sequences and simulated TCRβ

f deleted 3′ V bases f deleted 5′ J bases f added CDR3 basesa

Bases Observed Simulated Bases Observed Simulated Bases Observed Simulated

(N = 356) (N = 220 000) (N = 1151) (N = 220 000) (N = 174) (N = 220 000)

0 0.194 0.200 0 0.209 0.212 1 0.006 0.007

1 0.160 0.158 1 0.123 0.123 3 0.006 0.006

2 0.098 0.098 2 0.122 0.122 4 0.029 0.031

3 0.118 0.113 3 0.104 0.105 5 0.017 0.019

4 0.160 0.155 4 0.117 0.117 6 0.017 0.019

5 0.118 0.119 5 0.123 0.119 7 0.052 0.056

6 0.070 0.073 6 0.086 0.085 8 0.063 0.067

7 0.045 0.047 7 0.056 0.057 9 0.069 0.073

8 0.022 0.023 8 0.031 0.031 10 0.080 0.084

9 0.008 0.009 9 0.019 0.019 11 0.057 0.059

10 0.006 0.006 10 0.010 0.010 12 0.075 0.076

13 0.080 0.081

14 0.086 0.085

15 0.098 0.096

16 0.046 0.046

17 0.052 0.049

18 0.029 0.028

19 0.034 0.033

20 0.023 0.021

21 0.023 0.021

22 0.011 0.010

23 0.006 0.005

25 0.011 0.010

26 0.011 0.005

27 0.006 0.005

28 0.011 0.010

aWe did not observe addition of 2 or 24 nt within the CDR3.

2 METHODS

2.1 Modeling TCRβ rearrangements
From the alignments of predicted V and J genes to Genbank TCRβ mRNA,
four independent models of the N-diversity mechanisms were constructed,
representing the frequencies of (i) random base addition at the V–D–J
junction; (ii) base composition at each position where bases were added;
(iii) 3′ V base deletion; and (iv) 5′ J base deletion. The models are intended
as a guide for simulating distinct sequence clonotypes within the CDR3
region by estimating, using empirical data, expected frequencies of base
addition, deletion and composition (Table 1). These models were used to
construct sTCRβ sequences as described in Supplementary Material. Briefly,
this involved, (i) randomly selecting the V and J gene sequences; (ii) deleting
3′ V bases; (iii) deleting 5′ J bases; and (iv) joining V–D–J with addition of
junction bases.

For the simulations, we used only the ∼150 nt of simulated sequence
matching ∼40 nt upstream of the 3′ end of V, spanning CDR3 and J and
ending ∼50 nt downstream of the 5′ end of C. The process of building sTCRβ

was repeated to generate a library of 1 000 000 total sequences containing
220 000 unique sTCRβ sequences at frequencies ranging from 1 to 20 p.p.m.
(Table 2).

2.2 TCRβ–CDR3 reconstruction strategy
From the above 1M sTCRβ sequences, we randomly generated, in three
independent replicate experiments, 20 million 36 nt reads having 1.0, 1.5 or
2.0% randomly distributed errors and aligned them to known TCRβ gene
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Table 2. Generating sTCRβ clonotypes

Clonotype
frequency

p.p.m. Number of
unique sTCRβ

Number of total
sTCRβ

Fold coverage
ca.a

1:1 000 000 1 110 000 110 000 5
1:500 000 2 10 000 20 000 10
1:333 333 3 10 000 30 000 15
1:250 000 4 10 000 40 000 20
1:200 000 5 10 000 50 000 25
1:166 667 6 10 000 60 000 30
1:142 857 7 10 000 70 000 35
1:125 000 8 10 000 80 000 40
1:111 111 9 10 000 90 000 45
1:100 000 10 10 000 100 000 50
1:66 667 15 10 000 150 000 75
1:50 000 20 10 000 200 000 100

aApproximate coverage calculated using 150 nt sTCRβ template size, 20M 36 nt reads.

segments. In addition, we also generated 20M 42 or 50 nt 1% error reads
to assess the effect of read length on assembly and tested the effect of
random (Dohm et al., 2007) versus modeled (Using MAQ simutrain and
simulate on real phiX174 Illumina sequences; Heng et al., 2008) 1% read
error distributions. Simulated reads were aligned against Ensembl (Flicek
et al., 2008) TCRβ gene predictions using exonerate (Slater and Birney, 2005;
Software parameters used: –bestn 1 –score 1 –percent 0). Reads aligning best
to V genes, at the 3′ end and having eight or more consecutive unmatched
bases in 3′ were put aside as seeds for a de novo iSSAKE assembly. The
reverse, complemented sequences of reads aligning on the reverse strand
of V predictions were also considered as seeds. The assembly read pool
consisted of unaligned reads, those aligning to J segments best and assembly
seeds. Reads aligning best to V, C or any possible JC junction sequence
combinations were discarded (Fig. 1).

2.3 Targeted seeded assemblies with iSSAKE
To create the iSSAKE assembler, modifications were made to the SSAKE
v3.2.1 code base (Warren et al., 2007; http://www.bcgsc.ca/platform/bioinfo/
software/ssake). Notably, the depth of the prefix tree was increased,
augmenting the number of nodes to 15. This modification was essential
to help speed the assembly process at the cost of increased memory
requirements. It does so by reducing the search space when considering
reads for extension. This modification was compulsory since there is
great sequence conservation between the various sTCRβ CDR3 sequences,
sometimes differing by only one or a few bases.

Since SSAKE release v2.0 (October 2007), we have implemented the
approach for handling error-rich sequencing data described in Jeck et al.
(2007). In essence, all overhanging bases of reads aligning perfectly to a
seed sequence are considered for extension, using a majority rule approach
for building consensus sequences of the overhanging bases.

To support the assembly of longer contigs with complete CDR3 without
depleting the read pool, sequences used for extension are re-used. The
assembly terminates only when all seeds have been maximally extended. This
is easily parallelizable on a cluster of computers and permits the assembly
of discrete nontruncated TCRβ CDR3 sequences ending in the same
J segment. Finally, only the 3′ extension of seeds was permitted, the assembly
progressing through V, D and J in this order. For each read set, we ran 100
parallel iSSAKE jobs on two dozen 2.66 GHz Quad-Core 64 bit Intel®
Xeon® processors with 15 GB RAM (iSSAKE -m 15 -o 1 -r 0.6).

3 RESULTS
A library of 1 million sTCRβ was generated in silico using models of
TCRβ diversity derived from publicly available mRNA sequences.

Fig. 2. TCRβ–CDR3 reconstruction strategy. Reads are aligned against
Ensembl TCRβ gene predictions using exonerate or other short read aligners.
Reads aligning best to V genes at the 3′ end and having user defined n
consecutive unmatched bases in 3′ are set aside as seeds for a de novo
iSSAKE assembly. The reverse complements of reads aligning on the reverse
strand are also considered as seeds. The read pool consists of unaligned reads,
those aligning J genes best and assembly seeds. Reads aligning best to V, C
or any possible JC junction sequence combinations are discarded to reduce
sequence space.

The library consisted of 220 000 distinct sequences present at
frequencies ranging from 1 to 20 p.p.m. (110 000 unique 1 p.p.m.
sequences and 10 000 unique 2 to 20 p.p.m., Table 2). To confirm
that sTCRβ reflect real sequences, we kept track of the simulated
N-diversity changes applied to each sequence and verified that the
frequencies of V and J base deletion as well as CDR3 base addition
in the sTCRβ library were consistent with the frequencies derived
from experimental mRNAsequences (Table 1). Twenty million reads
having 1.0, 1.5 or 2.0% random or 1.0% modeled error and 36,
42 or 50 nt in length were randomly sampled from the sTCRβ

library and assembled in separate experiments. The approximate
read coverage for each 1–20 p.p.m. clonotype ranged from 5- to
96-fold, respectively (Table 2).

Since we expect the redundancy of short reads derived from V, J
and C to be extremely high and the redundancy over CDR3 to be
very low, a classic de novo assembly where all sequence reads are
used in turn to seed a contig assembly is not suitable. However, the
sequences of human TCRβ genes (V, J and C) are known and well
annotated, which makes feasible a streamlined strategy of seeded
assembly. The assembly seeds we use are sequences that align to
the 3′ end of V with eight or more consecutive unmatched 3′ bases
in the highly diverse CDR3 region (Fig. 1 inset and Fig. 2). Using
exonerate, averages of 1.755, 1.718, 1.679 and 1.599 million seeds
were identified from sets of reads with random 1.0, 1.5, 2.0 and
1.0% modeled error, respectively (Table 3). The decrease in number
of seeds identified at higher error rates or between random and
modeled error distribution (4.3% and 8.9%, respectively) is due to an
increased number of mismatched bases that prevent read alignment
to the 3′ end of the V gene. Selecting seeds before assembly reduces
the sequence space by ∼90% and segregates about half of the
20M input read set for contig assembly. This approach considerably
increases the assembly speed and yields only contigs that represent
the CDR3.

At 1% randomly distributed error, 84.2 ± 0.16% of the seeds, on
average, yielded contigs that comprised complete CDR3 sequences,
including D segment bases and unambiguous J segment junctions.
These unambiguous contigs which are defined as having clearly
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Table 3. sTCRβ contig stats from assemblies of 20M randomly generated 36, 42 and 50 nt reads

Bases Error (%)a Mean seeds Number of iSSAKE contigs from triplicates (36 nt) or duplicates (42 and 50 nt) experiments

Short ambiguousb Long ambiguousc Unambiguousd Unambiguous, but sub-optimale

A B

36 1.0f 1 599 140 ±961 498 583 ±822 36 352 ±261 1 064 399 ±400 1098 ±185 2847 ±89
36 1.0 1 755 437 ±404 265 618 ±245 11 520 ±500 1 478 299 ±236 157 ±19 569 ±5
36 1.5 1 718 470 ±890 359 425 ±882 16 460 ±325 1 342 585 ±1558 228 ±44 827 ±22
36 2.0 1 678 905 ±1018 441 317 ±712 22 018 ±307 1 215 570 ±385 302 ±9 1158 ±53
42 1.0 2 448 351 ±1298 369 847 ±998 21 956 ±315 2 056 549 ±614 239 ±14 818 ±3
50 1.0 3 119 789 ±1150 350 076 ±578 341 628 ±653 2 428 086 ±2380 174 ±12 459 ±8

A, misassembled contigs; B, contigs having five or more mismatched bases.
aRandom error distribution generated using simulators from Dohm et al. (2007), unless otherwise specified.
bToo short to unambiguously decipher J and thus, CDR3.
cContigs ≥ 45 nt, sufficiently long to contain the first 15 bases of J, but base errors/polymorphisms prevent proper identification of the J segment.
dCaptured CDR3 and first 15 bases of J unambiguously.
eMisassembled contigs are defined here as contigs comprised of reads that belong to distinct sTCRβ. They are identified by looking at discontinuity in the sequence alignment
between the contigs and sTCRβ. Contigs having five or more mismatches bases with the closest sTCRβ are built with erroneous reads that often yield misassembled contigs.
f Error distribution modeled using phiX174 Illumina sequence data as the training set (Heng et al., 2008).

demarcated V and J boundaries were subsequently trimmed to keep
the last 15 V bases, the CDR3 and the first 15 bases of identifiable
J sequence. The reason for trimming was to facilitate assessment
by removing bases that were uninformative for characterization
of CDR3. As expected, seeds from 36 nt read sets having higher
error rates or errors modeled on Illumina data yield fewer
unambiguous contigs, with average proportions of 78.1 ± 0.25%
and 72.4 ± 0.10% for the 1.5% and 2% random error sets and
66.6 ± 0.03% for the modeled error read set, respectively (Table 3).
This is because random base errors in the seed sequences cause
premature termination of contig extension by iSSAKE, unless one
or more reads in the pool has matching erroneous bases by chance.
The latter case can lead to (i) misassembled contigs, especially if
different sTCRβ have a very similar CDR3 makeup and (ii) long
ambiguous contigs where J segments are undecipherable.

Misassemblies are identified as contigs that do not match sTCRβ

in the source library. These were rarely observed (0.01–0.02% of
unambiguous contigs), although more prevalent in the 2% error
read set (Table 3). The effect of error on contig misassemblies
is more pronounced when error is modeled from real Illumina
data (Table 3), where error rates tend to increase toward the end
of the read. However, even with a modeled error distribution,
misassemblies still represent a minor proportion of all unambiguous
reconstructions (0.3%).

We define long ambiguous contigs as those large enough to
contain J segment bases, but because of base errors, there was not
a precisely matching J segment. An increase from 1% to 2% in
the error rate nearly doubles the number of long ambiguous contigs,
increasing their proportion from 0.7% to 1.3%. These contigs, while
ambiguous, were still useful for assessing the sensitivity of our
method. Their abundance is not negligible and the contigs still
produce valid alignments to a reference. With real data, identifying
the CDR3 from these contigs without a reference sequence will
prove more challenging. Short ambiguous contigs are defined here
as those that are not long enough to span CDR3. Short ambiguous
contigs are caused by early termination of contig extension due to

base errors. These short ambiguous contigs represent a considerable
portion of the total contigs (15% ± 0.01, 21% ± 0.04, 26% ± 0.05
and 31% ± 0.05 of assemblies using 1.0, 1.5, 2.0% random and 1%
modeled error read sets, respectively).

For each assembly, the average base accuracy was calculated
by counting the total number of matching bases over the aligned
contig length. Although base accuracy of assembled contigs is lower
when simulated sequence error rates are higher, it is above 99% at
all clonotype frequencies and error rates simulated (Tables 4–6).
Contigs representing clonotypes with the lowest frequencies were
the least accurate. This is not unexpected since at lower read depths,
there are fewer reads to offset the base error, especially in the highly
diverse and thus relatively thinly covered CDR3 region. Effectively,
inspection of the base error and coverage of assemblies as a function
of base position over the region of interest reveals that base mismatch
frequency peaks within the seed portion (any of the last 15 V
bases and at least 8 consecutive mismatched bases downstream)
and decreases through J as the base coverage increases (Fig. 3).

At clonotype frequencies as low as 3 p.p.m., over 93% of the
sTCRβ CDR3 sequences could be characterized by iSSAKE contigs
assembled from the 1% modeled error distribution read set (Table 4).
This means that the sTCRβ sequence diversity can be almost entirely
characterized at 15× coverage (Table 2). Although the scope of real
T-cell diversity remains unknown, if it is close to the estimated lower
limit of 106 β-chains, then substantial repertoire coverage should be
easy to attain by massively parallel short read sequencing, even
without trimming the reads.

For all contigs that capture sTCRβ sequences we find the accuracy
to be very high, especially for clonotypes present at 5 p.p.m. or
more. Interestingly, we find that read error has only a small impact
on accuracy at these clonotype frequencies. Seeds with errors will
rarely find a sequence match in iSSAKE, causing premature contig
extension or leading to an increased number of singlets, depleting
the pool of unambiguous contigs. Thus, early rejection of these reads
has a much more significant impact on the sensitivity than it does
on the accuracy.
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Table 4. Method sensitivity and accuracy as a function of a 1% read error distribution (random or modeled)

p.p.m. Number of sTCRβ–CDR3
characterized by iSSAKE
contigs (sensitivity)

Accuracy (%) Average number of
contigs characterizing
each sTCRβ

Error (%) Error (%) Error (%)

1.0 Random 1.0 Modeled 1.0 Random 1.0 Modeled 1.0 Random 1.0 Modeled

1 70 240 56 564 99.68 99.01 2.0 1.8
2 9111 8100 99.90 99.34 3.7 2.5
3 9747 9295 99.96 99.64 4.6 3.4
4 9883 9721 99.98 99.80 6.0 4.4
5 9932 9874 99.99 99.90 7.6 5.5
6 9936 9913 99.99 99.94 9.1 6.6
7 9935 9936 99.99 99.96 10.6 7.7
8 9939 9948 99.99 99.97 12.2 8.9
9 9948 9955 99.98 99.97 13.7 10.0

10 9956 9958 99.99 99.98 15.2 11.2
15 9972 9975 99.99 99.98 23.0 16.8
20 9955 9958 99.98 99.98 30.7 22.1

Unambiguous and long ambiguous contigs were used for this analysis. Reported values are the mean of triplicate simulations. Variation among simulations was minimal
(Supplementary Table 1).

Table 5. Method sensitivity and accuracy as a function of randomly
distributed error rates

p.p.m. Number of sTCRβ–CDR3

characterized by iSSAKE

contigs (sensitivity)

Accuracy (%) Average number of

contigs characterizing

each sTCRβ

Error (%) Error (%) Error (%)

1.5 2.0 1.5 2.0 1.5 2.0

1 64 862 59 259 99.48 99.23 1.9 1.8

2 8779 8423 99.80 99.68 2.9 2.6

3 9656 9520 99.92 99.85 4.1 3.7

4 9869 9831 99.96 99.93 5.4 4.9

5 9929 9920 99.98 99.97 6.9 6.2

6 9936 9928 99.98 99.98 8.2 7.5

7 9934 9924 99.98 99.97 9.7 8.7

8 9940 9929 99.98 99.98 11.0 10.1

9 9952 9944 99.98 99.98 12.5 11.3

10 9953 9940 99.99 99.98 13.9 12.6

15 9971 9966 99.99 99.98 21.1 19.3

20 9961 9944 99.98 99.98 28.2 26.0

Unambiguous and long ambiguous contigs were used for this analysis. Reported values
are the mean of triplicate simulations. Variation among simulations was minimal
(Supplementary Table 1).

Again, it is important that in real sequence data, errors tend to
accumulate toward the 3′ ends of reads, rather than being equally
distributed along the length of the read. Using error distribution
modeled on real data, we see fewer contigs reconstructed at
each p.p.m., due to fewer seeds being initially identified and more
frequent seed extension failures (Table 4). However, at least for
clonotype frequencies >5 p.p.m., reconstruction success rate is high
and largely unaffected by error distribution. At lower clonotype

Table 6. Method sensitivity and accuracy as a function of read length

p.p.m. Number of sTCRβ–CDR3

characterized by iSSAKE

contigs (sensitivity)

Accuracy (%) Average number of

contigs characterizing

each sTCRβ

Read length (nt) Read length (nt) Read length (nt)

42 50 42 50 42 50

1 90 210 104 155 99.74 99.75 2.4 2.9

2 9737 9914 99.93 99.95 4.3 5.4

3 9911 9959 99.98 99.98 6.4 8.0

4 9937 9963 99.99 99.98 8.5 10.7

5 9948 9966 99.99 99.98 10.7 13.2

6 9944 9966 99.98 99.98 12.8 15.8

7 9941 9974 99.98 99.97 14.8 18.3

8 9948 9975 99.98 99.97 17.0 20.8

9 9954 9979 99.98 99.98 19.1 23.2

10 9960 9983 99.98 99.98 21.1 25.7

15 9973 9985 99.99 99.98 31.1 37.2

20 9958 9976 99.98 99.98 40.0 47.4

Unambiguous and long ambiguous contigs were used for this analysis. Reported values
are the mean of duplicate (42 and 50 nt reads) simulations at 1.0% randomly distributed
errors. Variation among simulations was minimal (Supplementary Table 1).

frequencies, the reconstruction rate is lower; for instance, 63.8%
versus 51.5% of 1 p.p.m. sTCRβ can be identified when using a
random versus a modeled error distribution, respectively (Table 4).

A change of only 1% in the read base error (from 1% to 2%)
yields a 66% increase in contigs too short to characterize sTCRβ

unambiguously, usually because the J segment is incomplete and/or
its position cannot be identified with certainty. This translates into
a decreased sensitivity of the method of over 10% at 1 p.p.m.,
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Fig. 3. Average mismatched base frequency and mean contig base coverage
per position on trimmed, normalized, unambiguous contigs from triplicate
36 nt 1% random error read assemblies. Assembly base mismatch frequency
(i.e. assembly errors) reaches a maximum within the seed portion (any of the
last 15 V bases and at least eight consecutive mismatched bases downstream)
and decreases through J as the base coverage increases. The sudden increase
in average fold coverage beginning at approximately base position 30 is
explained by over sampling of a limited number (14) of J segments, and the
re-use of reads by the iSSAKE assembly algorithm. The position of the V
segment and approximate position of the CDR3 and J gene segments on the
contigs is shown on top of the graph and is depicted by the rectangles. Every
contig is comprised of the last and first 15 nt of the V and J gene segment,
respectively. The CDR3 and J gene segment boundaries are approximate
because the length of the CDR3 varies.

7% at 2 p.p.m. and 2% at 3 p.p.m. At higher clonotype frequencies
(>4 p.p.m.), the effect of base error on yielding short contigs is offset
by the larger read depth (Table 5).

The robustness of assemblies of higher frequency clonotypes
is further enhanced because more seeds are available at the start
of assembly. When assembled, these seeds should, in theory, lead
to contigs that characterize the same TCRβ. Keeping track of the
average number of contigs that characterize each sTCRβ generated
allows one to estimate the frequency of any given sTCRβ in the
sample. Consistently, at the error rates tested, there is an almost
perfect PEARSON correlation (0.9998, 0.9997 and 0.9994 at 1, 1.5
and 2% random error, respectively, and 0.9995 for the 1% modeled
error set) between the average number of sTCRβ-capturing contigs
and the frequency of that sTCRβ. Since the number of seeds (and
thus, contigs) identified per TCRβ varies linearly in function of read
coverage, as opposed to having a 1:1 relationship with the clonotype
frequency, the number of contigs identified cannot be expected to
reflect the exact clonality of each TCRβ in the sample. Instead, the
contig count may be used to estimate relative TCRβ abundance.

To explore the effect of read length, we also simulated sets of
42 and 50 nt × 20M reads at 1% random error. These read lengths
and error rates should be achievable by massively parallel short read
platforms, if not currently, then in the near future. Increasing the read
length has a drastic effect on the sensitivity of the method. Detection
of sTCRβ increases by 18% at 1 p.p.m. when 42 nt 1% error reads
are assembled compared to shorter 36 nt reads (Table 6). Using 50 nt
reads for assembly recovers over 94.7% of clonotypes, an increase
of >30% in detection compared to the usage of 36 nt reads with the

same error rate. At 2 p.p.m., the sensitivity of the recovery increases
from 91.1% to 97.4% to 99.1%, using 1% error 36, 42 and 50 nt
reads, respectively. Increased sensitivity is a direct consequence of
obtaining more seeds. With 42 and 50 nt reads, 40% and 77% more
seed sequences could be identified from our set of 20M simulated
reads (Table 3).

4 DISCUSSION AND CONCLUSION
Technological advances in sequencing (Holt and Jones, 2008)
put large-scale high-resolution TCR profiling within the realm
of possibility. However, shortcomings of these new sequencing
technologies, namely the appreciable sequencing errors and short
read lengths, require computational solutions to help make sense of
the data. We have explored the feasibility of using short 36, 42 and
50 nt error-prone sequences to characterize up to 1 million sTCRβ

sequences. Our strategy for reconstructing sTCRβ relies on two
bioinformatics pillars: short read sequence alignment and seeded
de novo assembly. Unidirectional de novo assemblies of short seeds
targeting the V–D–J junction is made possible using a modified
version of SSAKE (Warren et al., 2007) that handles sequencing
errors, re-use reads and processes k-mers more rapidly than earlier
versions (http://www.bcgsc.ca/platform/bioinfo/software/ssake).
This strategy is tailored for very short reads, such as those produced
by the Illumina Ltd. sequencing instrument, and constitute the main
theoretical advance presented in this article.

Sequence characterization of TCRs and more specifically the
variable portion encoding amino acids that directly interact with
antigenic peptide permits the identification of disease-associated
T-cells. Current TCR sequence profiling can at best decipher
hundreds of TCRs (Ozawa et al., 2008; Zhou et al., 2006), a small
number in comparison with the 107 TCR diversity estimated in an
individual (Arstila et al., 1999). Larger-scale profiling techniques
that examine CDR3 length heterogeneity provide a global snapshot
of TCR repertoires, but do not resolve individual clonotypes at the
macromolecular level (Gorski et al., 1994; Pannetier et al., 1993;
Penitente et al., 2008). Due to the low throughput, high cost and labor
requirements of traditional Sanger sequencing, sequence-profiling
TCR on that same scale has not yet been explored, thereby providing
the impetus for our study.

The success of TCR sequence reconstruction using short
sequences relies on the very region that makes profiling the TCR
repertoire challenging; the uniqueness and specificity of the CDR3
(Davis et al., 1998). Selection of seed sequences that comprise bases
encoding a portion of the variable region ensures that a streamlined,
unidirectional assembly proceeding through the junction will help
characterize unique clones. This is especially true if the sequence
coverage is 10-fold or above, or the frequency of the TCR is
high, since higher frequencies result in higher sequence coverage of
discrete TCRs. At low frequencies, base error has a strong negative
impact on TCR reconstruction rates that is due to sequence coverage
insufficient to offset base error in less redundant CDR3-encoding
regions. iSSAKE will not extend a seed or contig with a base error
in a minimum set overlap region, unless that base can be found at
the same position in an overlapping k-mer. This impacts favorably
on contig accuracy at the expense of reconstruction rates, especially
at low 1 p.p.m. frequencies and 2% error.

We examined instances of failure to detect CDR3 sequences
known to exist in our sTCRβ library. The majority (99.4% using
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36 nt read sets) of irresolvable low-frequency sTCRβ are attributable
to 3′ base errors. The problem is exacerbated for low-frequency
clones because these by definition have lower coverage and therefore
less chance for an error to be mitigated by read redundancy. At all
clonotype frequencies, but more noticeably at higher sequence
coverage, 0.3% of irresolvable sTCRβ are due to high sequence
identity between modeled TCRβ, sometimes differing only by a few
5′ V bases and thereby preventing unambiguous characterization of
their sequence. We see additional failure modes that are very rare
(∼0.2–0.3% of irresolvable sTCRβ, 0.004% of total sTCRβ) and
associated with shorter (36 and 42 nt) reads and higher frequency
clonotypes (>5 p.p.m.). For example, reads originating from CDR3
may by chance align well to V segments, C segments or JC junctions,
and will as a consequence be removed early in the assembly process
(Fig. 2) such that CDR3’s containing these sequences cannot be
assembled despite high read coverage. This failure mode was not
observed with longer 50 nt seeds and is explained by the increased
ability of seeds (which are never discarded) to span the entire CDR3
and capture a portion of J in a single read.

In time, accurate sequence length from next generation
sequencing platforms will exceed the length of CDR3. However,
sequence assembly will remain advantageous because it mitigates
the effect of sequence errors present in individual reads. In
the present study, fewer CDR3 sequences could be identified
unambiguously with the unassembled 50 nt read set compared to
the assembled one (533 868 versus 2 428 086 unambiguous contigs,
Supplementary Table 1). Already, a typical Illumina Sequence
Analyzer run will output more bases than we generated in this study,
at equal or lower error rates. This suggests that the overall strategy,
as outlined, will work with sequence data from biological samples.
We expect it will also be applicable to similar metagenomics
projects including sequence-characterization of the immunoglobulin
repertoire.
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