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ABSTRACT

Motivation: The rapid development of next-generation sequencing
technologies able to produce huge amounts of sequence data is
leading to a wide range of new applications. This triggers the need
for fast and accurate alignment software. Common techniques often
restrict indels in the alignment to improve speed, whereas more
flexible aligners are too slow for large-scale applications. Moreover,
many current aligners are becoming inefficient as generated reads
grow ever larger. Our goal with our new aligner GASSST (Global
Alignment Short Sequence Search Tool) is thus 2-fold—achieving
high performance with no restrictions on the number of indels with a
design that is still effective on long reads.
Results: We propose a new efficient filtering step that discards most
alignments coming from the seed phase before they are checked
by the costly dynamic programming algorithm. We use a carefully
designed series of filters of increasing complexity and efficiency
to quickly eliminate most candidate alignments in a wide range of
configurations. The main filter uses a precomputed table containing
the alignment score of short four base words aligned against each
other. This table is reused several times by a new algorithm designed
to approximate the score of the full dynamic programming algorithm.
We compare the performance of GASSST against BWA, BFAST,
SSAHA2 and PASS. We found that GASSST achieves high sensitivity
in a wide range of configurations and faster overall execution time
than other state-of-the-art aligners.
Availability: GASSST is distributed under the CeCILL software
license at http://www.irisa.fr/symbiose/projects/gassst/
Contact: guillaume.rizk@irisa.fr; dominique.lavenier@irisa.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Next-generation sequencing (NGS) technologies are now able to
produce large quantities of genomic data. They are used for a
wide range of applications, including genome resequencing or
polymorphism discovery. A very large amount of short sequences
are generated by these new technologies. For example, the Illumina-
Solexa system can produce over 50 million 32–100 bp reads in a
single run. A first step is generally to map these short reads over a
reference genome. To enable efficient, fast and accurate mapping,
new alignment programs have been recently developed. Their main
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goals are to globally align short sequences to local regions of
complete genomes in a very short time. Furthermore, to increase
sensitivity, a few alignment errors are permitted.

The seed and extend technique is mostly used for this purpose.
The underlying idea is that significant alignments include regions
having exact matches between two sequences. For example, any
50 bp read alignments with up to three errors contains at least
12 identical consecutive bases. Thus, using the seed and extend
technique, only sequences sharing common kmers are considered
for a possible alignment. Detection of common kmers is usually
performed through indexes localizing all kmers.

Recently, several index methods have been investigated and
implemented in various bioinformatics search tools. The first
method, used by SHRiMP (Rumble et al., 2009) and MAQ (Li,H.
et al., 2008), creates an index from the reads and scans the genome.
The advantage is a rather small memory footprint. The second
method makes the opposite choice: it creates an index from the
genome, and then aligns each read iteratively. PASS (Campagna
et al., 2009), SOAPv1 (Li,R. et al., 2008), BFAST (Homer et al.,
2009) and our new aligner GASSST (Global Alignment Short
Sequence Search Tool); use this approach. The last method, used in
CloudBurst, indexes both the genome and the reads. Although more
memory is needed, the algorithm exhibits better performance due
to memory cache locality. Another short read alignment technique,
used in Bowtie (Langmead et al., 2009), SOAPv2 (Li et al., 2009)
and BWA (Li and Durbin, 2009), uses a method called backward
search (Ferragina and Manzini, 2000) to search an index based
on the Burrows–Wheeler transform (BWT; Burrows and Wheeler,
1994). Basically, it allows exact matches to be found before using
a backtracking procedure that allows the addition of some errors.
Although this technique reports extremely fast running times and
small memory footprints, some data configurations lead to poor
performances. (http://bowtie-bio.sourceforge.net/manual.shtml).

Moreover, in order to speed-up computations, some methods
restrict the type or the number of errors per alignment to a few
mismatch and indel errors. In the building alignment process,
computing the number of mismatches requires linear time, whereas
indel errors require more costly algorithms such as the dynamic
programming techniques used in the Smith–Waterman (Smith and
Waterman, 1981) or Needleman–Wunsch (NW; Needleman and
Wunsch, 1970) algorithms. For instance, MAQ, Eland and Bowtie
do not allow gaps. EMBF (Wendi et al., 2009), SOAPv1 and
SOAPv2 allow only one continuous gap, while PASS, SHRiMP,
BFAST and SeqMap (Jiang and Wong, 2008) allow any combination
of mismatch and indel errors. GASSST, as well, considers any
combination of mismatch, insertion or deletion errors. In most
applications, when reads are very short, dealing with a restricted
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number of errors is acceptable. On the other hand, when longer
reads are processed, or when more distant reference genomes are
compared, this restriction may greatly affect the quality of the search.

In this article, we introduce GASSST, a new short read aligner
for mapping reads with mismatch and indel errors at a very high
speed. We show how a series of carefully designed filters allows
false positive positions to be quickly discarded before the refinement
extension step. In particular, GASSST is compared with similar
state-of-the-art programs: BFAST, BWA, PASS and SSAHA2.

2 APPROACH
GASSST uses the seed and extend strategy and indexes the genome.
The seed step provides all potentially homologous areas in the
genome with a given query sequence. The traditional way to
accomplish this step is through a hash-table of kmers for selecting
regions sharing common kmers with query sequences. To include
gaps, the extend step is carried out with a dynamic programming
algorithm (NW). This approach provides a high degree of accuracy,
but is prohibitively expensive due to the high number of costly NW
extensions that must be performed.

To tackle this issue, several approaches have been proposed.
The SHRiMP implementation (Rumble et al., 2009) provides an
improved seed step with spaced seeds and Q-gram filters to restrict
the size of the candidate hit space. Then, a carefully optimized
vectorized Smith–Waterman extension is run to perform the extend
step. BFAST (Homer et al., 2009) uses long spaced seeds to limit
the amount of candidate locations, yet still achieves high sensitivity
through the use of multiple indexes. PASS (Campagna et al., 2009)
implements another solution: a filter is introduced before the full
extend step to rule out areas that have too many differences with the
query sequence. A precomputed table of all possible short words,
aligned against each other, is built to perform a quick analysis of the
flanking regions adjacent to seed words.

The GASSST strategy is similar: a traditional anchoring method is
used followed by a NW extension step. However, fast computation is
achieved thanks to a very efficient filtering step. Candidate positions
are selected through a new carefully designed series of filters of
increasing complexity and efficiency. Two main types of filter are
used. One is related to the computation of an Euler distance between
nucleotide frequency vectors as defined by Wendi et al. (2009).
The idea is this: if one sequence has, for example, three more ‘T’
nucleotides than another, then the alignment will have at least three
errors (mismatches or indels).

The other includes precomputed tables, as in PASS, to produce
a score based on the NW algorithm, but brings the strategy to a
higher level; instead of addressing large tables, as PASS does, we
designed an algorithm able to reuse small tables along the whole
query sequence. In this way, the filter is much more selective and
discards a very large number of false positives, thus drastically
decreasing the time spent in the final extend step.

GASSST’s originality comes then from the use of a small lookup
table. More precisely, the precomputed alignment scores of all
possible pairs of words of length w can be stored in a memory
of size 42w bytes, if a score is memorized in a single byte. For
PASS, the size of the lookup table is 414 = 256 MB. This fits into
any computer’s main memory, but not in the first-level CPU cache.
Hence, random accessing of the table, even if it avoids many
computations, may still be costly. On the contrary, the GASSST

algorithm manipulates a small table of 64 KB which easily fits
into the cache memory, providing fast filtering compared with
non-precomputed calculations.

3 METHODS
GASSST algorithm has three stages: (i) searching for exact matching
seeds between the reference genome and the query sequences; (ii) quickly
eliminating hits that have more than a user-specified number of errors; and
(iii) computing the full gapped alignment with the NW algorithm. These
three steps are referred to, respectively, as seed-filter-extend. The novelty of
the GASSST approach relies on a new highly efficient filter method.

3.1 Seed
GASSST creates an index of all possible kmers in the reference sequence and
then scans every query sequence to find matching seeds. When seeds longer
than 14 are selected the algorithm uses a simple hash-table mechanism.
For each seed position in the reference sequence, the index contains the
sequence number, the position where it occurs and the flanking regions
(binary encoded). Up to 16 nt are stored on the left and on the right of
the seed in order to speed-up the next filtering steps. The size of the index
is equal to 16×N bytes, with N the size of the reference sequence. If large
reference sequences which exceed the memory size are considered, a simple
partitioning scheme is provided; the reference sequence is split into as many
parts as necessary to fit in the available RAM. Each part is then processed
iteratively.

3.2 Tiled-NW filter
A lookup table, called pre-computed score table PSTl , containing all the NW
alignment scores of all possible pairs of l nt long words is first computed.
PASS uses a PST7 to analyze discrepancies near the 7 nt long flanking region
adjacent to the seeds. The bigger the table, the better the filtering. But
unfortunately, the table grows exponentially with l. To address this issue,
GASSST analyzes discrepancies in a region of any length thanks to the reuse
of a small PST4 table. The goal is to provide a lower bound approximation
of the real NW score along the whole alignment. If estimated lower bounds
are greater than the maximum number of allowed errors, then alignments are
eliminated. If not, alignments are passed to the next step.

The following values are used for the NW score computation: 0 for a
match, and 1 for mismatch and indel errors. Consequently, the final score
indicates the number of discrepancies in the alignment.

In the following, only the right side of the seed is considered, the other
side being symmetrical.

Definition 1. We call TNWl(n) the score of a region of n nucleotides which
are adjacent to the right of the seed and which are computed with a PSTl .
TNW stands for Tiled NW. TNWl(full) operates on the maximum length
available, i.e. from the right of the seed to the end of the query sequence.

Definition 2. If S1 and S2 are the two sequences directly adjacent to the
right of the seed, we call PSTl(i, j) the pre-computed NW score for the two
l nt long words S1(i, i+l−1) and S2(j, j+l−1).

If Gm is the maximum number of allowed gaps, TNWl(n) is computed
with the following recursion:

If n≤ l then
TNWl(n)=PSTl(1,1) (1)

Else
TNWl(n)=min

(
A, B, C

)
(2)

With
A=TNWl(n−l)+PSTl(n−l+1, n− l+1)

B= min
1≤s≤Gm

(max(s, TNWl(n−l))+PSTl(n− l+1, n−l+1−s))
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A

Fig. 1. Computation of a semi-global alignment (only the query sequence
needs to be globally aligned), in the case of a maximum of 1 error. (A)
Dynamic Programming. With 12 nt long sequences and a traditional dynamic
programming algorithm, cell calculations can be limited in a band, but there
are still 34 cells to compute. (B) Tiled Algorithm. With a precomputed table
score of size 4×4, the tiled algorithm is performed in only three steps. The
first step requires one table access, while the second and third steps both
require three table accesses. Here, the score given by the tiled algorithm is
the same as the full dynamic programming algorithm—there are two errors
in the alignment. In the general case, the tiled algorithm only gives a lower
bound of the number of errors present in the alignment.

C = min
1≤s≤Gm

(max(s, TNWl(n−l))+PSTl(n−l+1−s, n−l+1))

Figure 1B shows a graphical representation of this recursion.

Complexity of the filter. GASSST uses a PST4 lookup table. By storing each
score in a single byte, its size is equal to 64 KB. This small size allows the
PST4 to fit in a CPU cache of today’s desktop computers. But if TNW4(4)

requires a few clock cycles to be accessed, its filtering power is limited.
In the general case, the number of PSTl accesses Nacc[TNW (n)] needed

for the computation is in O(n). If Gm is the maximum number of allowed
gaps, the exact formula is:

Nacc[TNW (n)]= (
⌈ n

l

⌉
−1)·(1+2 ·Gm)+1 (3)

The filter works with iterative l-sized levels. The first one takes one access,
then each following level requires (1+2·Gm) PSTl accesses. Each new level
filters more and more false positive alignments. Large PSTl tables lead to
fewer levels and better accuracy, but they imply longer execution times since
the number of memory cache misses increases rapidly with bigger tables.

3.3 Frequency vector filter
The frequency vector filter of GASSST is the same as the one used in
EMBF (Wendi et al., 2009). The idea is quite simple: if one sequence has,
for example, three more ‘G’ nucleotides than another sequence, then their
alignment will have at least three errors. If the user-specified maximum
number of errors is 2, then the alignment can be directly eliminated.

For a sequence S =s1s2 ...n of characters in the alphabet
�={a1, a2, ...,ap}, the frequency vector F ={f1, f2,..., fm} is defined as:

∀i∈[1;m] fi =
∑

1≤k≤n

δsk ,ai (4)

With

δsk ,ai =
{

1 if sk =ai

0 otherwise
(5)

The Euler distance has to be computed on similar frequency vectors, i.e.
referring to sequences of equal length. The distance is computed with:

ECD(F,G)=
∑

1≤i≤m

|ui −vi|
2

(6)

In GASSST, frequency vectors of sequences of up to 16 nt on both sides
of the seed are computed. Actually, this value is often limited by the length
of the reads, and forbids vectors of the reference sequence to be computed
at runtime. Indeed, the size of subsequences depends on the size available
on the read, which is often less than 16 and which is only known at compute
time. The Euler distance is computed between the frequency vectors of the
read and the genome. If the result is greater than the maximum number of
errors then the alignment is discarded.

The computation of the frequency vectors is vectorized and quickly
performed thanks to the binary format of the seed flanking regions. The
frequency vectors and the Euler distance computations are both vectorized
to benefit from vector execution units present in modern processors.
Since a 16 nt sequence is 32-bit encoded, counting the frequency of a
single nucleotide can be done with bit-level logical operations that operate
on traditional 32-bit words. The vectorization consists of simultaneously
computing values for the four nucleotides of the alphabet and operates on
128-bit wide words. The frequency distance vectorized filter is referred to as
FD-vec.

3.4 Filters combination
The goal of the filter step is to eliminate as many false positive alignments
generated by the seed step as possible, and in the fastest possible way. This
is done by ordering the individual filters from the fastest to the most complex
and powerful. Algorithm 1 shows the main computation loop of GASSST
with the series of filters. TNW4(4) is first since it is the fastest. It is followed
by the vectorized frequency filter that rules out remaining false positive
alignments. Then a more thorough filter is used (TNW4(16)). The last filter
is a TNW7(full) filter which is applied on the full length of the sequence
and with a PST7 in order to eliminate a maximum number of false positive
alignments. It is computationally intensive, but it comes at the end when
most alignments have already been ruled out.
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Finally, the true NW alignment is computed on alignments that go through
all filters. This combination of filters ensures an efficient and fast filtering in
a wide range of configurations, from short to longer reads, with low or high
polymorphism.

One important point is that these filters only discard alignments which are
proven to have too many errors and that would have been eliminated by the
NW algorithm. They never eliminate good alignments, hence they do not
decrease sensitivity.

Moreover, to reduce running time, the search is stopped when a maximal
number of occurrences of a seed in the reference sequence has been reached.
This kind of limitation is present in most other aligners. The only difference
here is that a threshold is also checked in some stage of the filtering
process. The threshold is automatically computed according to seed length
and reference sequence size. Users can control the speed/sensitivity trade-off
of this heuristic through a parameter s in 0–5 which modulates this threshold.

Algorithm 1 Main computation loop
1. Input:
2. reference genome, short query sequences.
3. parameter: n (maximum errors allowed).
4. Pre-calculation:
5. Compute the reference genome index
6. for each query q do
7. for each overlapping seed s in q do
8. for each occurrence o of s in reference genome do
9. if TNW4(4){q,s,o} <n then

10. if FD-vec{q,s,o} <n then
11. if TNW4(16){q,s,o} <n then
12. if TNW7(full){q,s,o} <n then
13. if NW{q,s,o} <n then
14. Print Alignment {q,s,o}

3.5 Extend
The extend step receives alignments that passed the filter step. It is computed
using a traditional banded NW algorithm. Significant alignments are then
printed with their full description. It should be noted that if the filter step
provides good efficiency, no optimization of the extend step is required.
Indeed, if most false positive alignments have already been ruled out, the
extend step should only take a negligible fraction of the total execution time.

4 RESULTS

4.1 Implementation
GASSST is implemented in C++ and runs on Linux, OS X and
Windows. It benefits from vector execution units with the use of SSE
(streaming SIMD extensions) instructions, and is multi-threaded. It
performs accurate and fast gapped alignments and allows the user
to specify the number of hits given per read (option -h). A tool is
provided to convert GASSST results to SAM format and compute
GASSST mapping quality. GASSST is distributed under the
CeCILL software license (http://www.cecill.info). Documentations
and source code are freely available from the following web site:
http://www.irisa.fr/symbiose/projects/gassst/.

4.2 Evaluated programs
The performance of GASSST is compared with four other programs:
PASS 0.74 (Campagna et al., 2009) BFAST 0.6.3c (Homer et al.,
2009), BWA 0.5.7 (Li and Durbin, 2009) and SSAHA 2.5.2 (Ning
et al., 2001) . PASS indexes the genome and scans reads. It uses

a precomputed NW table to filter alignments before conducting
the extension with a dynamic programming algorithm. BFAST is
currently one of the most popular tools. It relies on large spaced seeds
for a fast execution, and on many different indexes for sensitivity.

BWA uses another approach, based on the BWT, and is probably
one of the fastest aligners to date for alignments with a low error
rate. We also tested the BWA-SW variant intended to work best for
longer reads. In the following, ‘BWA’ refers to the BWA short read
mode and ‘BWA-SW’ to the long read variant.

The computer used for the tests is an Intel Xeon E5462 with
32 GB RAM running at 2.8 GHz. Although all programs tested are
able to benefit from multi-threaded computations, we choose to
compare performance on a single thread, as it is enough to assess
their respective strong or weak points.

We ran experiments with real datasets to give an indicative
behavior. Detailed program analysis was conducted on simulated
data where alignment correctness could be assessed.

4.3 Evaluation on real data
Performance was evaluated on three real datasets of short reads
obtained from the NCBI Short Reads Trace Archive. The three sets
contain, respectively, 11.9 million sequences of 36 bases, 6.8 million
sequences of 50 bases and 8.5 million sequences of 76 bases of
accession numbers SRR002320, SRR039633 and SRR017179. They
are all aligned with the whole human genome.

BWA short read aligner was run with default options, BFAST was
run with its 10 recommended indexes and default options, GASSST
and PASS were set to search for alignments with at most 10% errors.
We measured the execution time and the percentage of mapped reads
having a mappinq quality greater than or equal to 20. The results are
presented in Table 1.

Evaluation on real data is difficult since true alignment locations
are unknown. However, it is possible to compare results of different
aligners to estimate accuracy, as it is done by Li and Durbin (2010)
for their evaluation of BWA-SW. If an aligner A gives a high
mapping quality to a read and another aligner B finds an alignment
at another position for that same read with an alignment score better
or just slightly worse, then A alignment is probably wrong. A score
for each read is computed as the number of matches minus three
multiplied by the number of differences (mismatches and gaps). We
say that A alignment is questionable if the score derived from A
minus the score derived from B is less than 20. Since this evaluation
method is approximate, a full evaluation was conducted on simulated
data in Section 4.5.

On short 36 bp reads, GASSST performance is comparable to
BWA. On longer 76 bp reads both PASS anf BFAST becomes very
slow. On the other hand, the GASSST combination of filters still
works well for the 76 bp dataset.

GASSST and PASS currently cannot store the index on disk, yet
index computation time is amortized when working on very large
sets of reads. BFAST index time is very long because it uses 10
different indexes, however they are computed only once.

4.4 Filter behavior analysis
We measured the filtering power of the filter combination on the
same three datasets of the previous section to validate their efficiency
on different configurations. The allowed similarity rate was set to
90% minimum so the number of allowed errors was 3, 4 and 7,
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Table 1. Evaluation on real data

Read Software Index (s) Align (s) Q20% Q20
length Error rate (%)

36 bp GASSST 1712 3211 34.5 0.14
BFAST 520 800 17 520 41.8 0.12
BWA 5158 3739 35.4 0.17
PASS 2312 5072 41.4a –

50 bp GASSST 1719 4090 73.7 0.04
BFAST 520 800 22 799 80.4 0.10
BWA 5158 3043 74.5 0.17
PASS 2144 5384 79.3a –

76 bp GASSST 1701 8483 81.3 0.04
BFAST 520 800 161 220 85.4 0.28
BWA 5158 3101 86.4 0.53
PASS 1951 118 541 87.7a –

Datasets consisted, respectively, of 11.9, 6.8 and 8.5 millions of reads of size 36, 50
and 76 bp, of accession numbers SRR002320, SRR039633 and SRR017179. The three
datasets were aligned with the whole human genome. The time required to compute the
genome index is shown in column 3. For BFAST and BWA, the index was computed
only once and stored on disk. Column 4 shows the time required in seconds to align
reads, running on a single core of a 2.8 GHz Xeon E4562. Column 5 shows the
percentage of reads with a mapping quality greater than or equal to 20 (Q20). Last
column is the percentage of Q20 alignments that are probably wrong given the results
of other aligners: if a program gives a high mapping quality to a read and another
program finds a different alignment of similar alignment score for that read, then the
first program is probably wrong.
aSince PASS does not compute mapping qualities, fifth column shows for PASS the
percentage of reads with a unique best alignment, and error rate is not computed.

respectively. Other program options are possible and would result
in different behavior, so the results presented here cannot be
generalized and are only intended to provide an indicative example.

Hits coming from the seed step are pipelined through the filters.At
each filter step, we calculate the filtering percentage of the individual
step as well as the cumulative percentage of hits filtered so far. The
NW alignment is seen as the last filter and its result is also included.
Table 2 shows the results. The first thing that can be noted is that in
all cases the percentage of hits arriving at the NW step is limited to
0.2% of the number of hits generated by the seed phase. This means
that without filters, this step would take at least 500 times longer.

Second, one interesting thing to observe is the number of false
positive alignments that passed the filters and still arrive at the NW
step. The NW step filters about two-thirds of incoming hits, meaning
that previous filters have efficiently ruled out most false positive
alignments—one alignment out of three that enters the NW step is
valid. As expected, on the last dataset (seven allowed errors), the
TNW4(4) filter efficiency is very poor since it can only manage a
maximum of four errors on each side of the seed. In the current
implementation, this filter is deactivated when the number of errors
exceeds 7.

To complete this analysis, we measured the total time spent inside
each filter. The program was profiled for a typical execution with the
50 bp dataset. For each step, both the computation time of a single hit
in nanoseconds and the total execution time of the step in percentage
of the total time of the program were measured. The results are
shown in Table 3. The General Overhead mostly represents the cost
of line 8 of Algorithm 1, which iterates through hits and loads the
associated information. The TNW4(4) filter takes only 5.8 ns, which
represents, as expected, only a few clock cycles of the processor.

Table 2. Filtering rate on three datasets

Data Set Filter Step Step filter (%) Total filter (%)

36 bp TNW4(4) 64.9 64.9
FD−vec 72.8 90.5
TNW4(16) 96.6 99.7
TNW7(full) 45.9 99.8
NW 63.8 99.9

50 bp TNW4(4) 41.7 41.7
FD−vec 80.4 88.6
TNW4(16) 97.5 99.7
TNW7(full) 88.5 99.97
NW 67.5 99.99

76 bp TNW4(4) 0.1 0.1
FD−vec 49.8 49.9
TNW4(16) 93.7 96.8
TNW7(full) 94.8 99.8
NW 70.2 99.95

The first column gives the percentage of hits filtered by a given filter. The second column
gives the total percentage of hits filtered by the sequence of filters. Reads were aligned
with 10% errors maximum, which means a maximum of 3, 4 and 7 errors, gaps or
mismatches, respectively.

Table 3. Filters execution time

Step Execution time Total percent time
for one hit (ns) spent in this step

General Overhead 13.9 33
TNW4(4) 5.8 14
FD−vec 22.4 32
TNW4(16) 78.5 15
TNW7(full) 356.7 3
NW 4486.5 3

Average time taken by each filter step for one hit of a 50 bp query, in nanoseconds.
Note that only the times of TNW7(full) and NW actually depends on query size since
the others only work on a bounded size subsequence.

We can also verify that the filters are indeed ordered from the most
simple to the most complex. The NW step takes only 3% of the total
time, which validates the assessment formulated in Section 3.5 that
we do not need to be concerned about its optimization.

4.5 Evaluation on simulated data
We simulated 12 datasets containing one million reads each from
the entire human genome, with lengths of 50, 100, 200 and 500 bp
and with error rates of 2, 5 and 10%. The error rate is the probability
of each base being an error, 20% of errors are indel errors with indel
length l drawn from a geometric distribution of density 0.7×0.3l−1.
BFAST is run with options −K 8 and −M 1280 with 10 indexes.
GASSST was tested in two different configurations, a fast one with
option −s0 and an accurate one with −s3, which controls the
speed/sensitivity trade-off of the algorithm by setting a maximum
number of occurrences per seed. It is roughly the equivalent of
options −K and −M of BFAST. Other GASSST options such as
seed length and maximum number of allowed errors were tuned
accordingly to the different datasets. BWA and PASS options were
also tuned to allow more mismatches and gaps when necessary,
and BWA-SW was run with default configuration. Finding the most
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Table 4. Evaluation on simulated data

Program Mode Metrics 50 bp 100 bp 200 bp 500 bp

2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10%

GASSST fast Align sec 584 781 1720 794 981 1160 2030 2314 3051 6573 8453 11 859
Sensitivity% 45.8 42.8 36.1 54.2 53.3 44.9 58.6 56.3 53.8 61.0 59.8 58.8
Accuracy% 99.2 98.5 93.8 90.5 89.4 86.9 91.9 91.5 89.7 93.0 92.8 91.7

GASSST accurate Align sec 1709 2741 4706 1290 1887 3262 3452 6173 8744 12 864 18 737 34 222
Sensitivity% 46.7 44.6 37.5 51.0 50.3 43.5 53.4 52.8 51.7 57.5 55.7 55.5
Accuracy% 99.8 99.3 93.5 99.7 99.4 97.5 99.9 99.8 99.3 99.9 99.9 99.7

BFAST Align sec 2279 2044 1756 15 263 15 787 11 452 – – – – – –
Sensitivity% 46.5 43.0 32.1 52.7 51.0 48.5 – – – – – –
Accuracy% 98.8 96.1 85.2 99.0 98.7 95.8 – – – – – –

BWA Align sec 792 1392 1572 1862 4941 3364 4660 2145 185 – – –
Sensitivity% 48.2 38.6 16.8 54.8 41.0 7.3 53.3 11.9 0.1 – – –
Accuracy% 99.2 97.4 93.5 99.7 99.0 97.9 99.8 99.6 96.7 – – –

BWA-SW Align sec – – – – – – 4699 3546 2365 13 027 9646 7835
Sensitivity% – – – – – – 54.9 50.3 25.2 57.3 56.1 45.4
Accuracy% – – – – – – 99.4 96.9 85.7 99.2 96.8 85.2

SSAHA2 Align sec – – – 27 740 41 978 45 295 22 285 27 504 65 420 179 095 415 252 275 622
Sensitivity% – – – 45.3 43.5 38.6 53.2 51.4 48.4 59.5 58.8 55.8
Accuracy% – – – 99.8 99.1 95.3 99.8 99.1 96.0 99.8 99.2 95.3

PASS Align sec 2012 2281 5085 14 387 26 033 30 022 103 338 139 436 180 943 – – –
Sensitivity% 50.0 43.8 31.3 51.6 37.5 16.4 49.3 16.6 2.8 – – –
Accuracy% 96.6 93.2 82.4 98.5 94.0 86.8 97.2 93.6 92.4 – – –

Data sets containing one million reads each are simulated from the human genome with different lengths and error rate. Twenty percent of errors are indel errors with indel length
l drawn from a geometric distribution of density 0.7·0.3l−1. The alignment time in seconds only includes the fraction of the total time proportional to the number of reads, i.e,
not the time spent in computing or loading the index of the human genome, running on a single core of a 2.8 GHz Xeon E4562 . Computed alignment coordinates are compared
to the true simulated coordinates to find sensitivity and accuracy. Sensitivity is the percentage of reads correctly mapped, while accuracy is the percentage of mapped reads that
are correctly mapped. A read is considered mapped if it has a unique best alignment. A mapped read is considered correct if it is within 10 bp of its true coordinates. We filtered
alignments having a mapping quality less than 20, except for PASS, which does not give mapping quality.

efficient set of options for each program and each dataset is a lengthy
process, so although we did our best to tune options and provide a
fair evaluation, in some cases different options may yield better
performance. The results are presented in Table 4. Supplementary
Table S1 gives the list of options parameters used.

For each run, we reported accuracy, sensitivity and running time.
A read is considered to be mapped if it has a unique best alignment.
A mapped read is considered correct if it is within 10 bases of the
true location. We filtered all alignments that had a mapping quality
less than 20, except for PASS which does not compute mapping
quality. Sensitivity and accuracy are then, respectively, defined as
the percentage of total or mapped reads that are correct. The running
time reported does not include index loading or computing phase.
Although this choice penalizes BWA, which is the only one not
spending noticeable time recomputing or reloading indexes, it is
relevant since time spent for the index of the genome is constant
and is amortized when dealing with a very large number of reads.

Tests were also conducted with SHRiMP 1.3.1 but not included
here since running times were tens to hundreds of times larger
than GASSST, rendering evaluation impractical. This corresponds
to observations in other studies that had to extrapolate SHRiMP
running time (Homer et al., 2009).

For datasets with a low 2% error rate, GASSST performance is
comparable with BWA. For example, on short 50 bp reads, GASSST
in fast mode obtained 45.8%/99.2% sensitivity/accuracy in 584 s

compared with 48.2%/99.2% in 792 s for BWA. For higher error
rates, GASSST becomes better than BWA, for example, on the
100 bp reads with 10% error rate GASSST obtained 43.5%/97.5%
sensitivity/accuracy in 3262 s compared with 7.3%/97.9% in 3364 s
for BWA.

On datasets simulated with a high 10% error rate, GASSST
consistently reports better results than other aligners. On the 200 bp
10% dataset, GASSST was the only one able to provide high
sensitivity and accuracy within a reasonable amount of time. On
the 500 bp dataset, experiments are only conducted on GASSST,
BWA-SW and SSAHA2 since other aligners are not designed for
this read length. They show that GASSST still performs very well.
For example, on the 2% error rate dataset, GASSST obtained results
comparable to BWA-SW. With 10% error rate GASSST is eight
times faster than SSAHA2 for similar results, whereas BWA-SW
accuracy is dropping. BFAST is efficient on short 50 bp reads only,
its execution time increases a lot for longer reads.

Overall, these experiments show that GASSST performs well on
a wide range of configurations, as expected with the design of our
series of filters.

5 DISCUSSION
In this article, we introduced an original method to speed-up aligner
programs. While the BFAST approach is to reduce the number of
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candidate alignment locations generated in the seed step through
the use of large spaced seeds, our approach uses a simple indexing
scheme generating many candidate alignment locations, but quickly
discards most of them through a series of filters.

Experiments conducted on simulated data showed that the
GASSST approach provides fast and high quality results, and
that this new series of filters is indeed more efficient than
trying to optimize the NW algorithm further. Even a GPU-based
implementation of NW, with an optimistic 20-fold speed-up over
the SSE vectorized implementation of SHRiMP, would still be
slower than our filtering approach. Moreover, since sequencing
technologies are evolving toward longer and longer generated reads,
many algorithms designed to work best on short reads will become
inefficient. On the other hand, our experiments showed that GASSST
is already prepared for this evolution: it is efficient on short 50 bp
reads as well as on long 500 bp reads.

Table 3 shows that the General Overhead, the cost of iterating
through hits, can represent up to a third of the total execution time.
This reveals that for the simple indexing scheme we use our filtering
technique is close to the optimal solution possible, in the sense
that further improvements of filters would not bring much overall
speed-up. However, combining state-of-the-art indexing techniques
with our series of filters should achieve even better performance.
We could, for example, replace our simple unique index with the
multiple indexing technique used by BFAST. It would reduce the
number of hits to explore, probably increasing performance even
further.

GASSST currently uses a simple gap and mismatch scoring
scheme, whereas affine gap penalties are sometimes necessary.
It could very easily be integrated in the extend step. Yet if the filter
and extend step uses different scoring schemes, filters will no longer
be guaranteed to discard only false positive alignments. This could
be a problem that needs to be investigated. Another solution would
be to also include affine gap penalties in the filter step. Although
apparently problematic for our tiled NW algorithm, approximate
solutions might be designed and will be the focus of future work.

The experiments conducted demonstrate the efficiency of our
new filtering approach. This new approach is compatible with
all algorithms based on the seed-filter-extend strategy, so other
algorithms should be able to use it resulting in a significant
performance increase without any decrease in sensitivity.
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