Komplexná analýza Peter Šepitka podzim 2014 Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Obor komplexných čísiel Pod pojmom komplexné číslo a rozumieme usporiadanú dvojicu (α, β) ∈ R2 . Prvá zložka α tejto dvojice sa nazýva reálna časť komplexného čísla a, druhá zložka β sa nazýva imaginárna časť komplexného čísla a, označujeme α = Re a a β = Im a. Definujeme sčítanie a násobenie komplexných čísiel (α, β) + (γ, δ) := (α + γ, β + δ), (α, β) · (γ, δ) := (αγ − βδ, αδ + βγ). Sčítanie i násobenie komplexných čísiel sú asociatívne a komutatívne binárne operácie a pre každú trojicu a, b, c komplexných čísiel platí distributívny zákon a · (b + c) = a · b + a · c. Pre úplnosť definujeme násobenie komplexného čísla reálnym číslom r(α, β) := (rα, rβ), r ∈ R. Nula – (0, 0) – neutrálny prvok vzhľadom na sčítanie, t.j., (α, β) + (0, 0) = (0, 0) + (α, β) = (α, β). Jednotka – (1, 0) – neutrálny prvok vzhľadom na násobenie, t.j., (α, β) · (1, 0) = (1, 0) · (α, β) = (α, β). Komplexné čísla Funkcie Derivácia Opačné číslo ku komplexnému číslu a = (α, β) −a := (−α, −β) Komplexné číslo −a je jediné riešenie rovnice a + z = (0, 0). Inverzné číslo k nenulovému komplexnému číslu a = (α, β) a−1 := α α2 + β2 , −β α2 + β2 . Komplexné číslo a−1 je jediné riešenie rovnice a · z = (1, 0). Odčítanie komplexných čísiel a, b definujeme a − b := a + (−b). Delenie komplexných čísiel a, b, b = (0, 0), definujeme a/b := a · b−1 . Množina všetkých komplexných čísiel sa označuje C. Algebraická štruktúra (C, +, ·) je teleso, ktoré sa nedá usporiadať (na rozdiel od (R, +, ·)). Komplexné čísla Funkcie Derivácia Algebraický tvar komplexného čísla Podmnožina komplexných čísiel R := {a ∈ C, a = (α, 0), α ∈ R} je podtelesom telesa C izomorfným s telesom R všetkých reálnych čísiel. Preto je možné množiny R a R, ako algebraické štruktúry, stotožniť. To znamená, že v množine C budeme klásť α = (α, 0) pre každé α ∈ R. Potom 0 = (0, 0) a 1 = (1, 0). Ďalej, komplexné číslo (0, 1) sa označuje symbolom i, t.j., i = (0, 1), a nazýva sa imaginárna jednotka. Platí i2 = (−1, 0) = −1. Tieto označenia potom umožňujú vyjadriť komplexné číslo a = (α, β) v tzv. algebraickom tvare a = (α, β) = (α, 0) + (0, β) = α(1, 0) + β(0, 1) = α + iβ. (1) Komplexné číslo a = α + iβ s β = 0 (teda s Im a = 0) sa označuje ako reálne (komplexné) číslo, kým komplexné číslo a = α + iβ s β = 0 (teda s Im a = 0) sa nazýva imaginárne (komplexné) číslo. Imaginárne číslo s nulovou reálnou časťou sa nazýva rýdzo imaginárne (komplexné) číslo. Komplexne združené číslo ¯a k číslu a = α + iβ ∈ C je definované ako ¯a = α − iβ. Komplexné čísla Funkcie Derivácia Absolútna hodnota (veľkosť) |a| komplexného čísla a = α + iβ sa definuje |a| := α2 + β2. (2) Reálne číslo |a| vyjadruje geometrickú vzdialenosť bodu [α, β] od bodu [0, 0] v reálnej rovine. Všeobecne, pre a, b ∈ C reálne číslo |a − b| vyjadruje vzájomnú vzdialenosť bodov [Re a, Im a] a [Re b, Im b] v reálnej rovine. Poznámka 1 (Základné vlastnosti) Nech a, a1, a2 ∈ C. Potom platí: ¯¯a = a, a1 ± a2 = ¯a1 ± ¯a2, a1a2 = ¯a1¯a2, a1/a2 = ¯a1/¯a2, ak a2 = 0. a¯a = |a|2 , |a1a2| = |a1||a2|, |a1/a2| = |a1|/|a2|, ak a2 = 0. trojuholníkové nerovnosti ||a1| − |a2|| ≤ |a1 + a2| ≤ |a1| + |a2|. |Re a| ≤ |a|, |Im a| ≤ |a|. Re a = a + ¯a 2 , Im a = a − ¯a 2i . Re (a1 ± a2) = Re a1 ± Re a2, Im (a1 ± a2) = Im a1 ± Im a2. Komplexné čísla Funkcie Derivácia Komplexná (Gaussova) rovina Prirodzeným modelom množiny C komplexných čísiel je (euklidovská) rovina – komplexná (Gaussova) rovina. Každému komplexnému číslu z = x + iy je priradený bod v rovine so súradnicami [x, y]. Naopak, každému bodu [x, y] roviny odpovedá práve jedno komplexné číslo z = x + iy. Ďalej budeme preto pre jednoduchosť stotožnovať body roviny s komplexnými číslami. Vzdialenosť (metrika) sa v množine C definuje pomocou absolútnej hodnoty komplexného čísla zavedenej v (2), t.j., vzdialenosť dvoch komplexných čísiel z1 a z2 je definovaná d(z1, z2) := |z1 − z2|. Ako je to s pojmom “komplexné” nekonečno? Pre množinu C komplexných čísiel sa definuje iba jedno “nekonečno”. Konkrétne, k množine C sa formálne pridá jeden prvok, ktorý sa označuje symbolom ∞, spĺňajúci vlastnosti ∞ = −∞ = |∞|, ∞ · ∞ = ∞, z + ∞ = ∞, z/∞ = 0, ∞/z = ∞ pre z ∈ C, z · ∞ = ∞, z/0 = ∞, pre z ∈ C \ {0}. Nedefinujú sa výrazy ∞ + ∞, ∞ − ∞, 0 · ∞, 0/0, ∞/∞. Množina C ∪ {∞} sa spolu s danými algebraickými operáciami označuje ˜C a nazýva sa rozšírená (uzavretá) komplexná rovina alebo tiež rozšírená (uzavretá) Gaussova rovina. Komplexné čísla Funkcie Derivácia Goniometrický (polárny) tvar komplexného čísla S modelom komplexnej roviny úzko súvisí tzv. goniometrický (polárny) tvar komplexných čísiel. Každé nenulové komplexné číslo z je možné vyjadriť v tvare z = |z| (cos ϕ + i sin ϕ), (3) kde ϕ je argument komplexného čísla z definovaný rovnicami cos ϕ = Re z |z| , sin ϕ = Im z |z| . (4) Argument ϕ nie je určený jednoznačne (ak ϕ je argument z, potom i ϕ + 2kπ, k ∈ Z, je argument z). Množina všetkých argumentov daného komplexného čísla sa označuje Arg z (je to tzv. mnohoznačná funkcia premennej z). Symbol arg z bude označovať základný (hlavný) argument komplexného čísla z, t.j., argument spĺňajúci −π ≤ arg z < π. Základný argument arg z je pre dané z určený jednoznačne. Platí Arg z = {arg z + 2kπ, k ∈ Z}. (5) Posledná rovnosť sa často zapisuje i v tvare Arg z ≡ arg z (mod 2π). Komplexné čísla Funkcie Derivácia Zavedenie goniometrického tvaru v (3) umožňuje efektívne násobiť a deliť komplexné čísla. Konkrétne, ak z1 = |z1| (cos ϕ1 + i sin ϕ1), z2 = |z2| (cos ϕ2 + i sin ϕ2) sú dve komplexné čísla a ϕ1 a ϕ2 sú ich ľubovoľné argumenty, potom platí z1z2 = |z1||z2| (cos ϕ1 + i sin ϕ1) (cos ϕ2 + i sin ϕ2) = |z1||z2| [(cos ϕ1 cos ϕ2 − sin ϕ1 sin ϕ2) + i(sin ϕ1 cos ϕ2 + cos ϕ1 sin ϕ2)] = |z1||z2| [cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)]. (6) Z rovnosti (6) potom vyplýva Arg (z1z2) = Arg z1 +Arg z2 a arg(z1z2) ≡ arg z1 +arg z2 (mod 2π), (7) ako aj tzv. Moivreov vzorec na výpočet n-tej mocniny komplexného čísla z zn = |z|n [cos (n arg z) + i sin (n arg z)], n ∈ N. (8) Okrem toho z relácií (7) vyplýva Arg (zn ) = n Arg z a arg(zn ) ≡ n arg z (mod 2π). (9) Komplexné čísla Funkcie Derivácia Podobne, pre podiel z1/z2, z2 = 0, platí z1 z2 = |z1| |z2| cos ϕ1 + i sin ϕ1 cos ϕ2 + i sin ϕ2 = |z1| |z2| cos ϕ1 + i sin ϕ1 cos ϕ2 + i sin ϕ2 cos ϕ2 − i sin ϕ2 cos ϕ2 − i sin ϕ2 = |z1| |z2| cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2) cos2 ϕ2 + sin2 ϕ2 = |z1| |z2| [cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)]. (10) Potom máme Arg z1 z2 = Arg z1 − Arg z2, arg z1 z2 ≡ arg z1 − arg z2 (mod 2π). (11) Pre každé z ∈ C a n ∈ N je n-tá odmocnina zo z definovaná ako n √ z = n |z| cos arg z + 2kπ n + i sin arg z + 2kπ n , (12) kde k = 0, . . . , n − 1. Pre pevné n sa teda jedná o mnohoznačnú funkciu (premennej z), pričom pre každé z ∈ C existuje práve n jeho n-tých odmocnín. Komplexné čísla Funkcie Derivácia Výraz cos ϕ + i sin ϕ, ϕ ∈ R, sa obvykle označuje symbolom eiϕ , t.j., eiϕ := cos ϕ + i sin ϕ. (13) Pre každé z ∈ C potom platí z = |z| eiϕ , ϕ ∈ Arg z. (14) Zápis (14) sa nazýva exponenciálny tvar komplexného čísla z. Pre každé ϕ, ϕ1, ϕ2 ∈ R platí |eiϕ | = 1, arg eiϕ ≡ ϕ (mod 2π), eiϕ = e−iϕ = 1/eiϕ , (15) cos ϕ = eiϕ + e−iϕ 2 , sin ϕ = eiϕ − e−iϕ 2i , (16) ei(ϕ1+ϕ2) = eiϕ1 eiϕ2 , ei(ϕ1−ϕ2) = eiϕ1 /eiϕ2 , (17) eiϕ m = eimϕ , m ∈ Z. (18) Neskôr ukážeme, že výraz eiϕ zavedený v (13) je rozšírením exponenciálnej funkcie ex do oboru komplexných čísiel. Komplexné čísla Funkcie Derivácia Príklad 1 Dané komplexné číslo napíšte v goniometrickom tvare 1 + i. Pre komplexné číslo z = 1 + i platí Re z = 1, Im z = 1, |z| = 12 + 12 = √ 2. Ľubovoľný argument ϕ čísla z potom spĺňa rovnosti cos ϕ = Re z/|z| = 1/ √ 2, sin ϕ = Im z/|z| = 1/ √ 2. Riešenie tejto sústavy je napr. ϕ = 9π/4. Potom platí z = √ 2 [cos (9π/4) + i sin (9π/4)]. Základný argument čísla z je arg z = π/4 a podobne platí z = √ 2 [cos (π/4) + i sin (π/4)]. Komplexné čísla Funkcie Derivácia Príklad 2 Dané komplexné číslo napíšte v goniometrickom tvare −2 √ 3 − 2i. Pre komplexné číslo z = −2 √ 3 − 2i platí Re z = −2 √ 3, Im z = −2, |z| = (−2 √ 3)2 + (−2)2 = 4. Ľubovoľný argument ϕ čísla z spĺňa rovnosti cos ϕ = Re z/|z| = − √ 3/2, sin ϕ = Im z/|z| = −1/2. Základný argument čísla z je arg z = −5π/6 a platí z = 4 [cos (−5π/6) + i sin (−5π/6)]. Komplexné čísla Funkcie Derivácia Príklad 3 Vypočítajte (1 + i √ 3)15 . Použijeme Moivreov vzorec (8). Komplexné číslo z = 1 + i √ 3 prepíšeme do goniometrického tvaru. Platí |z| = 2, arg z = π/3, a teda z = 2 [cos (π/3) + i sin (π/3)]. Potom podľa (8) máme z15 = 215 [cos (15π/3) + i sin (15π/3)] = 215 [cos (5π) + i sin (5π)] = −215 . Poznamenajme, že rovnaký výsledok by sme získali klasickým roznásobením podľa binomickej vety. Komplexné čísla Funkcie Derivácia Príklad 4 Vypočítajme v C 3 √ −8. Podľa (12) existujú práve 3 komplexné tretie odmocniny z čísla z = −8. Goniometrický tvar čísla z je z = 8 [cos (−π) + i sin (−π)]. Podľa (12) platí 3 √ −8 = 3 √ 8 cos −π + 2kπ 3 + i sin −π + 2kπ 3 , pričom k = 0, 1, 2. Postupne dostáveme k = 0 −→ 3 √ 8 cos −π 3 + i sin −π 3 = 1 − i √ 3, k = 1 −→ 3 √ 8 cos π 3 + i sin π 3 = 1 + i √ 3, k = 2 −→ 3 √ 8 (cos π + i sin π) = −2. Komplexné čísla Funkcie Derivácia Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Postupnosti v C Nech r ∈ R+ a z0 ∈ C. Otvoreným kruhom K(z0, r) so stredom v bode z0 a s polomerom r rozumieme množinu K(z0, r) := {z ∈ C, |z − z0| < r}. Množina K(z0, r) sa často označuje aj ako r-okolie bodu z0. Ak z0 = ∞, definujeme K(∞, r) := {z ∈ ˜C, |z| > 1/r}. Nech {an}∞ n=1 je postupnosť komplexných čísiel. Komplexné číslo a0 ∈ ˜C sa nazýva limitou postupnosti {an}∞ n=1, ak pre každé ε-okolie bodu a0 existuje index nε ∈ N tak, že an ∈ K(a0, ε) pre každý index n ≥ nε. Potom píšeme limn→∞ an = a0 alebo aj an → a0. Veta 1 Nech {an}∞ n=1 je postupnosť v C a a0 ∈ ˜C. Potom an → a0 práve vtedy, keď lim n→∞ |an −a0| = 0 ⇐⇒ lim n→∞ Re an = Re a0 & lim n→∞ Im an = Im a0. (19) V tomto prípade platí i an → a0. Podobne, an → ∞ práve vtedy, keď lim n→∞ |an| = ∞, resp., lim n→∞ 1/|an| = 0. (20) Komplexné čísla Funkcie Derivácia Číselné rady v C Nech {an}∞ n=1 je postupnosť v C. Postupnosť {sk}∞ k=1 (tzv. postupnosť čiastočných súčtov) definovaná ako sk := k n=1 an sa nazýva nekonečný rad s členmi an a označuje sa ∞ n=1 an, resp. an. Rad an konverguje (resp., je konvergentný), ak existuje konečná limita postupnosti {sk}∞ k=1. Túto limitu potom označujeme ako súčet s radu a píšeme s = an. V opačnom prípade rad an diverguje (resp., je divergentný). Veta 2 Nech an, bn sú konvergentné rady a a, b ∈ C. Potom platí: limn→∞ an = 0 (nutná podmienka konvergencie radu). Rad an konverguje so súčtom an = an. Rad (aan + bbn) konverguje a (aan + bbn) = a an + b bn. Veta 3 Komplexný rad an konverguje práve vtedy, keď konverguje každý z reálnych radov Re an a Im an, pričom platí an = Re an + i Im an. Komplexné čísla Funkcie Derivácia Komplexný rad an sa nazýva absolútne konvergentný, ak rad |an| je konvergentný. Každý absolútne konvergentný rad je i konvergentný a platí an ≤ |an|. Ak an konverguje, ale rad |an| diverguje, potom hovoríme, že rad an konverguje neabsolútne (relatívne). Platia nasledujúce výsledky. Veta 4 Komplexný rad an konverguje absolútne práve vtedy, keď každý z reálnych radov Re an a Im an konverguje absolútne. Veta 5 (Riemannova veta o prerovnaní absolútne konvergentného radu) Ak komplexný rad an konverguje absolútne, potom každé prerovnanie tohto radu konverguje absolútne s rovnakým súčtom, t.j., platí aτ(n) = an pre každú permutáciu τ množiny N (t.j., pre každú bijekciu τ : N → N). Komplexné čísla Funkcie Derivácia Pri vyšetrovaní (absolútnej) konvergencie komplexných radov môžeme aplikovať mnohé kritériá využívané v reálnej analýze. Porovnávacie kritérium – ak komplexný rad an spĺňa |an| ≤ bn pre každé n ∈ N, kde bn je konvergentný reálny rad, potom rad an konverguje absolútne. D’Alembertovo podielové kritérium – ak komplexný rad an spĺňa |an+1/an| ≤ q < 1 pre každé n ∈ N, potom an konverguje absolútne. Ak |an+1/an| ≥ 1 pre každé n ∈ N, potom rad an diverguje. Obzvášť, ak existuje limn→∞ |an+1/an| = q ∈ R∗ , potom pre q < 1 (q > 1) rad an konverguje absolútne (diverguje). Cauchyho odmocninové kritérium – ak komplexný rad an spĺňa n |an| ≤ q < 1 pre každé n ∈ N, potom an konverguje absolútne. Ak n |an| ≥ 1 pre každé n ∈ N, potom rad an diverguje. Obzvášť, ak existuje limn→∞ n |an| = q ∈ R∗ , potom pre q < 1 (q > 1) rad an konverguje absolútne (diverguje). Cauchyho integrálne kritérium – ak rad an spĺňa |an| = f(n) pre každé n ∈ N, kde f : [1, ∞) → R je nezáporná, nerastúca a spojitá funkcia, potom rad an konverguje absolútne práve vtedy, keď nevlastný integrál ∞ 1 f(x) dx konverguje. Komplexné čísla Funkcie Derivácia Príklad 5 Stanovme limitu lim n→∞ (1 + i)n n! . Nájdeme reálnu a imaginárnu časť príslušnej postupnosti. Podľa Príkladu 1 platí (1 + i)n n! = √ 2 [cos (π/4) + i sin (π/4)] n n! = ( √ 2)n cos (πn/4) n! + i ( √ 2)n sin (πn/4) n! . Teda máme Re (1 + i)n n! = ( √ 2)n cos (πn/4) n! , Im (1 + i)n n! = ( √ 2)n sin (πn/4) n! . Keďže platí lim n→∞ Re (1 + i)n n! = 0 = lim n→∞ Im (1 + i)n n! , podľa Vety 1 limita v zadaní príkladu existuje a je rovná 0 + i0 = 0. Komplexné čísla Funkcie Derivácia Príklad 6 Dokážme lim n→∞ in n2n = 0. Uvedený výsledok vyplýva z Vety 1, pretože platí lim n→∞ in n2n − 0 = lim n→∞ |i|n n2n = lim n→∞ 1 n2n = 0. Príklad 7 Nájdime limitu lim n→∞ n ein . Táto limita existuje a je nevlastná, pretože platí lim n→∞ n ein = lim n→∞ n ein = lim n→∞ n = ∞. Pri výpočte sme využili prvú rovnosť v (15), t.j., ein = 1. Podľa Vety 1 potom lim n→∞ n ein = ∞. Komplexné čísla Funkcie Derivácia Príklad 8 Nájdime súčet radu ∞ n=1 1 + i (−1)n−1 n n2 . V danom rade oddelíme jeho reálnu a imaginárnu časť. Dostaneme Re 1 + i (−1)n−1 n n2 = 1 n2 , Im 1 + i (−1)n−1 n n2 = (−1)n−1 n , n ∈ N. Keďže z reálnej analýzy máme 1/n2 = π2 /6, (−1)n−1 /n = ln 2, podľa Vety 3 konverguje i rad v zadaní príkladu a platí 1 + i (−1)n−1 n n2 = π2 6 + i ln 2. Komplexné čísla Funkcie Derivácia Príklad 9 Vyšetrime konvergenciu radu ∞ n=1 in n . Oddelením reálnej a imaginárnej časti daného radu dostaneme Re in n = (−1)k /(2k), n = 2k, 0, n = 2k − 1, Im in n = 0, n = 2k, (−1)k−1 /(2k − 1), n = 2k − 1. Obidva reálne rady Re a Im konvergujú (podľa Leibnizovho kritéria), a preto podľa Vety 3 konverguje i rad v zadaní príkladu. Komplexné čísla Funkcie Derivácia Príklad 10 Vyšetrime konvergenciu radov a) ∞ n=1 n(1 + i)n 3n , b) ∞ n=1 an , a ∈ C. a) Rad konverguje absolútne podľa D’Alembertovho kritéria, nakoľko lim n→∞ (n+1)(1+i)n+1 3n+1 n(1+i)n 3n = lim n→∞ (n + 1)(1 + i) 3n = lim n→∞ (n + 1) √ 2 3n = √ 2 3 < 1. b) Aplikovaním Cauchyho odmocninového kritéria dostaneme lim n→∞ n |an| = lim n→∞ n |a|n = lim n→∞ |a| = |a|. Pre |a| < 1 daný rad konverguje absolútne, pre |a| > 1 rad diverguje. V prípade |a| = 1 rad diverguje, pretože nie je splnená nutná podmienka konvergencie vo Vete 2 (limn→∞ an = 0, resp. neexistuje). Komplexné čísla Funkcie Derivácia Funkcie v C Nech D je podmnožina v ˜C. Pod pojmom (komplexná) funkcia (komplexnej premennej) f budeme rozumieť priradenie, ktoré každému číslu z ∈ D priradí jednu alebo viac hodnôt w ∈ ˜C. Množina D sa nazýva definičný obor funkcie f a označuje sa D(f). Množina H(f) := {w ∈ ˜C, w = f(z), z ∈ D(f)} sa nazýva obor hodnôt funkcie f. Ak je každému z ∈ D(f) priradená práve jedna hodnota w = f(z) ∈ H(f), potom hovoríme o jednoznačnej funkcii f. V opačnom prípade funkciu f označujeme ako mnohoznačnú. Vhodným zúžením oboru hodnôt H(f) mnohoznačnej funkcie f dostaneme jednoznačnú funkciu – tzv. jednoznačnú vetvu komplexnej funkcie f. Vo všeobecnosti teda komplexná funkcia komplexnej premennej nie je zobrazenie, pričom symbol f(z) znamená podmnožinu v H(f). Inverznou funkciou k funkcii f : w = f(z), z ∈ D(f), rozumieme funkciu f−1 : z = f−1 (w), ktorá každému w ∈ H(f) priradí práve tie z ∈ D(f), pre ktoré w = f(z). Zrejme D(f−1 ) = H(f) a H(f−1 ) = D(f). Okrem toho, f(f−1 (w)) = w, pre každé w ∈ H(f), avšak neplatí všeobecne f−1 (f(z)) = z, pre z ∈ D(f). Inverzná funkcia f−1 môže byť jednoznačná i mnohoznačná. Komplexné čísla Funkcie Derivácia Nech f je funkcia. Ak D(f) ⊆ R, jedná sa o funkciu reálnej premennej, inak hovoríme o funkcii komplexnej premennej. V prípade H(f) ⊆ R máme reálnu funkciu, inak (t.j., pre H(f) ⊆ ˜C) máme komplexnú funkciu. Ak platí dokonca H(f) ⊆ C, potom hovoríme o konečnej (komplexnej) funkcii. Nech f je konečná funkcia komplexnej premennej. Potom existujú jediné reálne funkcie u, v : R2 → R také, že pre každé z = x + iy ∈ D(f) ∩ C platí f(z) = u(x, y) + i v(x, y). (21) Funkcie u a v sa nazývajú reálna a imaginárna časť funkcie f, t.j., u(x, y) = Re f(z), v(x, y) = Im f(z). (22) Funkcia ¯f definovaná ¯f(z) := f(z), z ∈ D(f), sa nazýva funkcia komplexne združená s f. Zrejme potom platí ¯f(z) = u(x, y) − i v(x, y) a Re f(z) = f(z) + ¯f(z) 2 , Im f(z) = f(z) − ¯f(z) 2i , z ∈ D(f). (23) Komplexné čísla Funkcie Derivácia Limitu a spojitosť komplexnej funkcie f komplexnej premennej definujeme podobným spôsobom ako v reálnej analýze. Nech M ⊆ ˜C a z0 je hromadný bod množiny M. Číslo w0 ∈ ˜C nazývame limitou funkcie f v bode z0 vzhľadom na množinu M a píšeme lim z→z0 z∈M f(z) = w0, ak pre každé okolie O(w0) bodu w0 existuje rýdze okolie O∗ (z0) bodu z0 také, že pre každé z ∈ O∗ (z0) ∩ M platí f(z) ∈ O(w0). V prípade M = D(f) dostávame limitu funkcie f v tradičnom slova zmysle, t.j., lim z→z0 f(z) = lim z→z0 z∈D(f) f(z) = w0. Okrem toho platia relácie lim z→z0 f(z) = w0 ⇐⇒ lim z→z0 Re f(z) = Re w0, lim z→z0 Im f(z) = Im w0, (24) lim z→z0 f(z) = w0 ⇐⇒ lim z→z0 ¯f(z) = w0. (25) Funkcia f je spojitá v bode z0 ∈ D(f), ak limz→z0 f(z) = f(z0). Pre spojitosť funkcie potom platia výsledky analogické s (24) a (25). Komplexné čísla Funkcie Derivácia Príklad 11 Príkladom reálnych funkcií komplexnej premennej sú funkcie w = Re z, w = |z|, w = arg z. Jedná sa o jednoznačné funkcie. Funkcia w = zn , pre n ∈ N pevné, je komplexná funkcia komplexnej premennej, kým funkcia w = eiϕ , ϕ ∈ R, je komplexná funkcia reálnej premennej ϕ. Ďalej, funkcie w = Arg z, w = n √ z, n ∈ N pevné, sú príkladmi mnohoznačných komplexných funkcií komplexnej premennej. Prvá z nich je nekonečne-značná, druhá je n-značná. Zúžením oboru hodnôt prvej z nich dostaneme napríklad už zmienenú jednoznačnú funkciu ˜w = arg z. Jednoznačnou vetvou druhej funkcie je napríklad funkcia (porovnaj s (12)) ˜w = n |z| cos arg z n + i sin arg z n . Komplexné čísla Funkcie Derivácia Príklad 12 Stanovme limitu lim z→0 Re z z . V limitovanej funkcii oddelíme jej reálnu a imaginárnu časť. Poznamenajme, že konvergencia z = x + iy → 0 je ekvivalentná s x → 0 & y → 0. Platí lim z→0 Re z z = lim (x,y)→(0,0) x x + iy = lim (x,y)→(0,0) x x + iy x − iy x − iy = lim (x,y)→(0,0) x(x − iy) x2 + y2 = lim (x,y)→(0,0) x2 x2 + y2 − i xy x2 + y2 . Z reálnej analýzy funkcií dvoch premenných vieme ľahko ukázať, že limity lim (x,y)→(0,0) x2 x2 + y2 , lim (x,y)→(0,0) xy x2 + y2 neexistujú. Podľa (24) potom neexistuje ani limita v zadaní príkladu. Komplexné čísla Funkcie Derivácia Príklad 13 Vypočítajme limitu lim z→0 z Re z |z| . V limitovanej funkcii oddelíme jej reálnu a imaginárnu časť. Dostaneme lim z→0 z Re z |z| = lim (x,y)→(0,0) (x + iy)x x2 + y2 = lim (x,y)→(0,0) x2 x2 + y2 + i yx x2 + y2 . V tomto prípade platí lim (x,y)→(0,0) x2 x2 + y2 = 0 = lim (x,y)→(0,0) yx x2 + y2 . Preto podľa (24) limita v zadaní príkladu má hodnotu 0 + i0 = 0. Komplexné čísla Funkcie Derivácia Príklad 14 Zistime limitu lim z→i z2 + 1 z − i . V limitovanej funkcii vykonáme algebraické úpravy (rozklad čitateľa na súčin) lim z→i z2 + 1 z − i = lim z→i (z + i)(z − i) z − i = lim z→i (z + i) = 2i. Príklad 15 Rozhodnime o existencii limity lim z→0 ¯z z . Dokážeme, že uvedená limita neexistuje. Nech z sa blíži k bodu 0 = 0 + i0 po reálnej osi, t.j., z = x ∈ R. Potom ¯z/z = ¯x/x = x/x = 1, a limz→0 ¯z/z = 1 v tomto prípade. Ak z sa bude k 0 blížiť po imaginárnej osi, t.j., z = iy ∈ i R, potom platí ¯z/z = −iy/iy = −1, a v tomto prípade limz→0 ¯z/z = −1. Pri pohybe po dvoch rôznych cestách do bodu 0 sme dostali dve rôzne hodnoty limity. Preto daná limita neexistuje. Komplexné čísla Funkcie Derivácia Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Derivácia komplexnej funkcie Definícia 1 (Komplexná diferencovateľnosť) Nech G je otvorená podmnožina v C a f je konečná funkcia definovaná na G. Hovoríme, že f je komplexne diferencovateľná (monogénna) v bode z0 ∈ G, ak existuje konečná limita lim z→z0 f(z) − f(z0) z − z0 resp. lim h→0 h∈C f(z0 + h) − f(z0) h . (26) Limita v (26) sa nazýva derivácia funkcie f v bode z0 a označuje sa f′ (z0), resp. df dz (z0). V komplexnej analýze sa teda nedefinuje nevlastná derivácia a derivácia v bode ∞. Z Definície 1 vyplýva, že funkcia f : G → C je komplexne diferencovateľná v bode z0 ∈ G práve vtedy, keď existuje komplexné číslo a s vlastnosťou lim h→0 h∈C f(z0 + h) − f(z0) − ah h = 0. (27) V tomto prípade a = f′ (z0). Výraz ah sa nazýva diferenciál funkcie f v bode z0 a označuje sa df(z0), resp. df(z0)(h). Komplexné čísla Funkcie Derivácia Komplexná derivácia má podobné základné vlastnosti ako derivácia v reálnom obore. Vo všeobecnosti je však komplexná diferencovateľnosť podstatne silnejší koncept než reálna diferencovateľnosť. Veta 6 Ak funkcia f je komplexne diferencovateľná v bode z0 ∈ C, potom je v bode z0 spojitá. Dôkaz. Výsledok vyplýva z Definície 1 a z nasledujúceho výpočtu lim z→z0 f(z) = lim z→z0 f(z) − f(z0) z − z0 (z − z0) + f(z0) = f′ (z0)·0+f(z0) = f(z0). Poznámka 2 Poznamenajme, že podobne ako v reálnom obore spojitosť funkcie nezaručuje komplexnú diferencovateľnosť funkcie. Túto skutočnosť ilustruje Príklad 17. Komplexné čísla Funkcie Derivácia Veta 7 (Základné vlastnosti) (i) Ak funkcie f, g sú komplexne diferencovateľné v bode z0 ∈ C, potom aj funkcie f ± g, f · g a f/g (ak g(z0) = 0) sú komplexne diferencovateľné v bode z0 a platí (f ± g)′ (z0) = f′ (z0) ± g′ (z0), (f · g)′ (z0) = f′ (z0) g(z0) + f(z0) g′ (z0), (f/g)′ (z0) = f′ (z0) g(z0) − f(z0) g′ (z0) /[g(z0)]2 . (ii) Ak funkcia f je komplexne diferencovateľná v bode z0 ∈ C a funkcia g je komplexne diferencovateľná v bode f(z0), potom aj zložená funkcia g ◦ f je komplexne diferencovateľná v z0 a platí (g ◦ f)′ (z0) = g′ (f(z0)) f′ (z0). (iii) Ak funkcia f je komplexne diferencovateľná v bode z0 ∈ C a prostá na okolí bodu z0, potom inverzná funkcia f−1 je komplexne diferencovateľná v bode w0 = f(z0) a platí f−1 ′ (w0) = 1/f′ (z0). Komplexné čísla Funkcie Derivácia V nasledujúcom budeme pracovať s algebraickým tvarom komplexných čísiel a funkcií, t.j., podľa (21) pre dané z ∈ C a danú komplexnú funkciu f máme z = x + iy a f(z) = u(x, y) + iv(x, y) pre x, y ∈ R. (28) Pripomeňme, že jednoznačne určené reálne funkcie u, v sú podľa (22) reálnou a imaginárnou časťou funkcie f. Veta 8 (Nutná podmienka komplexnej diferencovateľnosti) Nech funkcia f je komplexne diferencovateľná v bode z0 = x0 + iy0. Potom funkcie u, v v (28) spĺňajú tzv. Cauchyho–Riemannove rovnice (podmienky) ∂u ∂x (x0, y0) = ∂v ∂y (x0, y0), ∂u ∂y (x0, y0) = − ∂v ∂x (x0, y0). (29) Pre deriváciu f′ (z0) potom platí f′ (z0) = ∂u ∂x (x0, y0) + i ∂v ∂x (x0, y0) = ∂v ∂y (x0, y0) − i ∂u ∂y (x0, y0). (30) Komplexné čísla Funkcie Derivácia Náčrt dôkazu. Ak f je komplexne diferencovateľná v bode z0, potom podľa Definície 1 je f definovaná na nejakom okolí bodu z0 a existuje limita v (26). Hodnota tejto limity nezávisí na ceste, po ktorej sa s premenlivým bodom z blížime do bodu z0. Uvažujme napríklad z = x + iy0, kde x ∈ R a x → x0. Do z0 = x0 + iy0 sa teda blížíme po priamke y = y0. Platí potom f′ (z0) = lim z=x+iy0 x→x0 f(z) − f(z0) z − z0 = lim x→x0 f(x + iy0) − f(x0 + iy0) x − x0 . Pomocou funkcií u, v sa posledná limita dá rozpísať do tvaru f′ (z0) = lim x→x0 u(x, y0) + iv(x, y0) − u(x0, y0) − iv(x0, y0) x − x0 = lim x→x0 u(x, y0) − u(x0, y0) x − x0 + i v(x, y0) − v(x0, y0) x − x0 . Limitovaním posledného výrazu dostaneme prvú rovnosť v (30). Podobným spôsobom odvodíme i druhé vyjadrenie derivácie f′ (z0) v (30), kde uvažujeme z = x0 + iy s y ∈ R a y → y0 (priamka x = x0). Porovnaním reálnych a imaginárnych častí vyjadrení v (30) dostaneme rovnosti (29). Komplexné čísla Funkcie Derivácia Poznámka 3 Z Vety 8 vyplýva, že nutnými podmienkami existencie komplexnej derivácie f′ (z0) je existencia prvých parciálnych derivácií reálnych funkcií u, v v bode [x0, y0] a platnosť Cauchyho–Riemannovych podmienok (29) v bode [x0, y0]. Ako však ukazuje nasledujúca veta, nie sú to zároveň aj postačujúce podmienky. Veta 9 (Nutná a postačujúca podmienka komplexnej diferencovateľnosti) Funkcia f je komplexne diferencovateľná v bode z0 ∈ C práve vtedy, keď reálne funkcie u, v v (28) sú diferencovateľné v [x0, y0] a platia rovnice v (29). Nech G ⊆ C je otvorená množina. Hovoríme, že komplexná funkcia f je komplexne diferencovateľná na G, ak f′ (z) existuje v každom bode z ∈ G. Z Vety 9 vyplýva, že ak funkcie u, v v (28) majú spojité I. parciálne derivácie na G a spĺňajú podmienky (29) na G, potom f je komplexne diferencovateľná v G. Komplexné čísla Funkcie Derivácia Cauchyho–Riemannove podmienky (29) výrazne obmedzujú triedu reálnych diferencovateľných funkcií u, v, ktoré môžu byť reálnymi, resp. imaginárnymi časťami komplexne diferencovateľných funkcií. Ak totiž funkcia f = u + iv je komplexne diferencovateľná v otvorenej množine G ⊆ C a funkcie u, v majú naviac spojité i druhé parciálne derivácie na G, potom u, v sú riešeniami tzv. Laplaceovej rovnice na G, t.j., platí ∂2 u ∂x2 + ∂2 u ∂y2 = 0, ∂2 v ∂x2 + ∂2 v ∂y2 = 0 na G. (31) Riešenia Laplaceovej rovnice sa označujú ako harmonické funkcie. Reálne a imaginárne časti komplexne diferencovateľných funkcií v G musia preto byť nutne harmonickými funkciami v G. Neskôr ukážeme, že požiadavka existencie a spojitosti druhých (dokonca i všetkých vyšších) parciálnych derivácií funkcií u, v na G je prekvapivo prirodzene zabudovaná v koncepte komplexnej derivácie funkcie f na množine G. Veta 10 Nech G ⊆ C je jednoducho súvislá oblasť. Potom ku každej harmonickej funkcii u (resp. v) na G existuje funkcia f komplexne diferencovateľná na G tak, že u = Re f (resp. v = Im f) na G. Komplexné čísla Funkcie Derivácia Príklad 16 Dokážme, že pre každé pevné n ∈ N platí (zn )′ = nzn−1 , z ∈ C. Označme f(z) = zn a nech z0 ∈ C je zafixované. Podľa Definície 1 máme f′ (z0) = lim z→z0 zn − zn 0 z − z0 = lim z→z0 zn−1 + zn−2 z0 + · · · + zzn−2 0 + zn−1 0 = nzn−1 0 . Príklad 17 Funkcia f(z) = ¯z = x − iy je síce spojitá v celej komplexnej rovine, ale nie je nikde v C komplexne diferencovateľná, pretože limita lim h→0 h∈C z0 + h − z0 h = lim h→0 h∈C z0 + ¯h − z0 h = lim h→0 h∈C ¯h h neexistuje pre žiadne z0 ∈ C (porovnaj s Príkladom 15). Komplexné čísla Funkcie Derivácia Príklad 18 Rozhodnime o existencii derivácie funkcie (ako funkcie v C) f(z) = 1/z overením Cauchyho–Riemannovych rovností (29). Zrejme D(f) = C \ {0}. Oddelíme reálnu a imaginárnu časť funkcie f 1 z = 1 x + iy = x − iy (x + iy)(x − iy) = x x2 + y2 + i −y x2 + y2 . Platí u(x, y) = x/(x2 + y2 ), v(x, y) = −y/(x2 + y2 ), a ďalej u′ x = (y2 − x2 )/(x2 + y2 )2 , u′ y = (−2xy)/(x2 + y2 )2 , v′ x = (2xy)/(x2 + y2 )2 , v′ y = (y2 − x2 )/(x2 + y2 )2 , Funkcie u, v sú diferencovateľné na D(f) a platia rovnosti (29) na D(f). Teda podľa Vety 9 funkcia f je komplexne diferencovateľná na D(f) a platí 1 z ′ = u′ x+iv′ x = y2 − x2 (x2 + y2)2 +i 2xy (x2 + y2)2 = − (x − iy)2 (x2 + y2)2 = − (¯z)2 |z|4 = − 1 z2 . Komplexné čísla Funkcie Derivácia Príklad 19 Určme komplexne diferencovateľnú funkciu f, ktorá spĺňa Re f(z) = x3 − 3xy2 + 3x2 − 3y2 + 1, f(0) = 1. Funkcia u(x, y) = x3 − 3xy2 + 3x2 − 3y2 + 1 je harmonická v C, nakoľko u′ x = 3x2 − 3y2 + 6x, u′′ xx = 6x + 6, u′ y = −6xy − 6y, u′′ yy = −6x − 6, ⇓ u′′ xx + u′′ yy = 0 v R2 . Podľa Vety 10 je funkcia u reálnou časťou istej funkcie f, ktorá je komplexne diferencovateľná na C. Jej imaginárnu časť v určíme z podmienok (29) v′ x = −u′ y = 6xy + 6y, v′ y = u′ x = 3x2 − 3y2 + 6x. Máme teda určiť kmeňovú funkciu v pre dvojicu 6xy + 6y a 3x2 − 3y2 + 6x. Komplexné čísla Funkcie Derivácia Príklad 19 Postupujúc štandardným spôsobom, dostaneme v(x, y) = −y3 + 3x2 y + 6xy + K, K ∈ R. Keďže f(0) = 1, platí v(0, 0) = Im f(0) = 0, a teda K = 0. Funkcia f má tvar f(z) = x3 − 3xy2 + 3x2 − 3y2 + 1 + i (−y3 + 3x2 y + 6xy). Nakoniec, ak dosadeníme za reálne premenné x, y výrazy x = (z + ¯z)/2, y = (z − ¯z)/2i, dostaneme vyjadrenie hodnoty f(z) pomocou komplexnej premennej z. Po úpravách získame finálny predpis f(z) = z3 + 3z2 + 1. Komplexné čísla Funkcie Derivácia Holomorfné funkcie Definícia 2 (Holomorfná funkcia) Hovoríme, že funkcia f je holomorfná (analytická, regulárna) v bode z0 ∈ C, ak f má deriváciu na nejakom okolí bodu z0. Funkcia f je holomorfná na množine G ⊆ C, ak je holomorfná v každom bode z ∈ G. Pojem holomorfnosti funkcie (na rozdiel od komplexnej diferencovateľnosti) je možné zaviesť i pre nevlastný bod ∞. Konkétne, funkcia f(z) sa označuje ako holomorfná v bode ∞, ak funkcia f(1/z) je holomorfná v bode z0 = 0. Príklad 20 Z predchádzajúcich príkladov (Príklady 16, 17 a 18) vyplýva, že funkcia f(z) = zn je holomorfná v celej komplexnej rovine, funkcia g(z) = ¯z nie je holomorfná v žiadnom bode z ˜C a funkcia h(z) = 1/z je holomorfná na ˜C \ {0}. Príklad 21 Funkcia f(z) = |z|2 nie je holomorfná v žiadnom bode z ˜C, hoci je komplexne diferencovateľná v bode z0 = 0, ako sa možno ľahko presvedčiť. Komplexné čísla Funkcie Derivácia Veta 11 Nech G ⊆ C je oblasť. Funkcia f : G → C je konštantná na G práve vtedy, keď je holomorfná na G a f′ (z) = 0 pre každé z ∈ G. Dôkaz. Implikácia “⇒” vyplýva priamo z Definícií 1 a 2. Naopak, nech f je holomorfná na G s f′ (z) = 0 pre každé z ∈ G. Funkcie u, v z (28) podľa (30) spĺňajú u′ x(x, y) = 0 = v′ x(x, y), v′ y(x, y) = 0 = −u′ y(x, y) pre každé [x, y] ∈ G, z čoho vyplýva, že funkcie u, v sú konštantné na oblasti G. To znamená, že i funkcia f = u + iv je konštantná na G. Dôsledok 1 Nech f, g sú funkcie holomorfné na oblasti G ⊆ C. Potom platia tvrdenia. (i) Rovnosť f′ ≡ g′ platí na G práve vtedy, keď f ≡ g + K na G, kde K je (komplexná) konštanta. (ii) Funkcia f je polynóm stupňa menšieho ako n na G práve vtedy, keď f(n) ≡ 0 na G. Komplexné čísla Funkcie Derivácia Komplexné funkcionálne rady Nech G ⊆ C je neprázdna množina a nech {fn(z)}∞ n=1 je postupnosť funkcií definovaných na G. Postupnosť čiastočných súčtov {sk(z)}∞ k=1 definovaná sk(z) := k n=1 fn(z), z ∈ G, k ∈ N, sa nazýva (nekonečný) funkcionálny rad s členmi fn a označuje sa ∞ n=1 fn(z), resp. fn(z). Rozlišujeme dva typy konvergencie funkcionálnych postupností a radov. Bodová konvergencia na G – pre každé z0 ∈ G je číselná postupnosť {fn(z0)} (číselný rad fn(z0)) konvergentná(ý). Funkcia f s vlastnosťou f(z) = lim n→∞ fn(z) f(z) = fn(z) pre každé z ∈ G, sa nazýva limitná funkcia postupnosti (súčet radu). Symbolicky značíme fn → f fn → f na G. Komplexné čísla Funkcie Derivácia Rovnomerná konvergencia na G – zhruba povedané, konvergencia k limitnej funkcii (k súčtu) nezávisí na premennej z. Presnejšie, ak f je limitná funkcia postupnosti {fn}, potom pre každé ε > 0 existuje index nε ∈ N tak, že |fn(z) − f(z)| < ε pre každé n ≥ nε a pre každé z ∈ G. Rad fn(z) konverguje rovnomerne k súčtu f na G, ak jeho príslušná postupnosť čiastočných súčtov {sk} konverguje rovnomerne k f na G. Symbolicky zapisujeme fn ⇒ f ( fn ⇒ f) na G. Veta 12 (Cauchyho–Bolzanove kritériá rovnomernej konvergencie) Postupnosť {fn} konverguje rovnomerne na G práve vtedy, keď pre každé ε > 0 existuje index nε ∈ N tak, že |fn(z) − fm(z)| < ε pre každé n, m ≥ nε a pre každé z ∈ G. Rad fn konverguje rovnomerne na G práve vtedy, keď pre každé ε > 0 existuje index nε ∈ N tak, že m+n k=n fk(z) < ε pre každé n ≥ nε, m ∈ N, a pre každé z ∈ G. Komplexné čísla Funkcie Derivácia Cauchyho–Bolzanove kritéria udávajú nutné a zároveň postačujúce podmienky rovnomernej konvergencie postupnosti (radu) funkcií. Pre praktické výpočty sa však s výhodu využíva nasledujúce postačujúce kritérium. Veta 13 (Weierstrassovo kritérium rovnomernej konvergencie) Ak pre rad fn existuje konvergentný reálny číselný rad αn s vlastnosťou |fn(z)| ≤ αn pre každé n ∈ N a pre každé z ∈ G, potom rad fn konverguje rovnomerne na množine G. Reálny číselný rad αn vo Vete 13 sa nazýva majorantný rad (majoranta) pre funkcionálny rad fn. Veta 14 Nech {fn} je postupnosť funkcií spojitých na množine G ⊆ C. Ak rad fn konverguje rovnomerne na G k súčtu f, potom funkcia f je spojitá na G.