MA010 Tutorial 4-Solution to Problem 4

Frédéric Dupuis

Problem

A maximum independent set is a set of vertices such that no two of them are joined by an edge. A covering of vertices by edges is a set of edges such that every vertex is an endpoint of at least one of these edges. Prove that if G is a bipartite graph with every vertex having degree at least 1 , then the size of the largest independent set is equal to the size of the smallest covering of vertices by edges.

Hint: Think of the relationship with König's theorem (i.e. max matching $=$ min vertex cover in bipartite graphs). What is the complement of a vertex cover?

Solution

Denote the graph by $G=(V, E)$, let $c(G)$ be the size of the minimum edge cover, and let $i(G)$ be the size of the maximum independent set. We prove the statement in two steps: first, we show that $i(G) \leqslant c(G)$, and then we show that there exists an edge cover of the same size as the maximum independent set.

To show that $i(G) \leqslant c(G)$, suppose that we have an edge cover $E_{c} \subseteq E$ and an independent set $I \subseteq V$ with $|I|>\left|E_{c}\right|$. Since E_{c} is an edge cover, every vertex $v \in I$ must be adjacent to at least one edge in E_{c}, and since $|I|>\left|E_{c}\right|$, there must be at least one edge in E_{c} adjacent to two vertices in I. This contradicts the fact that I is an independent set.

Now, we show that there must exist an edge cover E_{c} with $\left|E_{c}\right|=i(G)$. To do this, we first observe that the complement of a vertex cover is an independent set, and vice-versa. Now, König's theorem tells us that in a bipartite graph, the size $m(G)$ of a maximum matching is equal to the size $v(G)$ of a minimum vertex cover.

We now construct the edge cover E_{c} as follows. First, we find a maximum matching E_{m} in G, and derive from it a minimum vertex cover $V_{c} \subseteq V$, such that each edge in E_{m} is adjacent to exactly one vertex in V_{c} (and therefore to one vertex in the maximum independent set $V \in V_{c}$). We then add to E_{c} all the edges in the matching E_{m}. This means that E_{c} now automatically covers all vertices in V_{c} (as well as an equal number of vertices from $\left.V \backslash V_{c}\right)$. Now, for each vertex $v \in V \backslash V_{c}$ that remains uncovered, we add one edge. Since $V \backslash V_{c}$ is an independent set, we need exactly one edge per uncovered vertex. Now we are done: E_{c} is clearly an edge cover, and there is a one-to-one mapping between edges in E_{c} and vertices in $V \backslash V_{c}$, and therefore $\left|E_{c}\right|=\left|V \backslash V_{c}\right|$.

