MA010 Tutorial 5

Frédéric Dupuis

This tutorial covers material from lecture 6 .

Problem 1

Prove that the following two graphs are not 3-colourable. Are they 4-colourable?

(a)

(b)

Source: https://www.math.ucdavis.edu/~greg/145/hw6sol.pdf

Problem 2

Let G be a graph with chromatic number $\chi(G) \geqslant 11$ and girth $g \geqslant 11$ (the girth is the length of the shortest cycle). Prove that the number of vertices of G is bigger than $10 \cdot 9^{4}$. (Hint: Remember Lemma 6.10 from class: every graph G has a subgraph of minimum degree $\geqslant \chi(G)-1$.)

Source: www.tau.ac.il/~nogaa/graphs134h.pdf

Problem 3

Let $G=\left(V, E_{1} \cup E_{2}\right)$ be a graph, where E_{1} and E_{2} are nonempty matchings. Show that the chromatic number of G is 2 .

Source: www.tau.ac.il/~nogaa/graphs134h.pdf

Problem 4

Show that the complete bipartite graph $K_{2,4}$ is not 2-choosable (i.e. 2-list-colourable). That is, assign a list of two colours to every vertex such that no proper colouring of the vertices by colours from their list exists.

