
PA165 - Lab session – RESTful Webservices
25.11.2014

Goals
a) set-up a RESTful webservice in Spring, b) look at the differences with Jersey (JAX-RS
reference implementation), as a side-goal c) look also at Spring-boot for Spring
configuration.

Prerequisites
Netbeans 7.3.x, Tomcat 7, Java 7, Maven 3

Scenario
There is an old RESTful application written with the support of Jersey (JAX-RS) that
allows to manage Customers resources. Your goal is to rewrite the REST methods and
port it to Spring, possibly improving the RESTful design.

Applications
In the IS you can find two applications:

• PA165-Fall2014-Seminar11_JerseyREST.zip: this is the application you are
needed to port -> No need to modify it, you can look at the REST methods and
observe how it behaves;

• PA165-Fall2014-Seminar11_Spring-REST-Start.zip: this is a pre-configured
Spring application that already contains most that is needed -> you can use it
at as a base for the tasks;

Task 1
Check the original Jersey application (from PA165-Fall2014-
Seminar11_JerseyREST.zip). Look at how Jersey has been configured and how the
REST methods work.
You should be able to import the project in Netbeans and run from it. Alternatively you
can compile & run it from the command line from the root of the project:

module add maven-3.0.5
mvn clean install && mvn tomcat7:run

then check that methods are accessible http://localhost:8080/JerseyREST/customers.

You can use curl to interrogate the REST methods (just some sample commands you
can use):

GET
curl -i -X GET http://localhost:8080/JerseyREST/customers

DELETE
curl -i -X DELETE http://localhost:8080/JerseyREST/customers/1

POST
curl -X POST -i -H "Content-Type: application/json" --data '{"id":"99","invention":"mass
production","name":"Henry","occupation":"Industrialist","surname":"Ford"}'
http://localhost:8080/JerseyREST/customers

PUT

http://localhost:8080/JerseyREST/customers

curl -X PUT -i -H "Content-Type: application/json" --data '{"id":"99","invention":"mass
production","name":"Henry","occupation":"Industrialist","surname":"Ford"}'
http://localhost:8080/JerseyREST/customers/99

Task 2
Open the Spring project (from PA165-Fall2014-Seminar11_Spring-REST-Start.zip).
You should be able to compile and run it from Netbeans. If you need to run it from
command line, you can do so with

module add maven-3.0.5 (if not done previously in the same shell)
mvn clean install && mvn tomcat7:run

You do not have yet a REST controller, but once you have added it, you should be able
to access it from http://localhost:8080/spring-rest/ plus the mapping - for the moment
you should see a page reporting that we do not have any explicit mapping for /error,
this is fine since we do not need views in this project.

Take a look at the project: both Spring-boot configuration and the classes. In particular,
most of your changes will be done in
cz.muni.fi.pa165.rest.controllers.CustomerController class.

Task 3
Start following the TODOs for implementation of the REST methods in
cz.muni.fi.pa165.rest.controllers.CustomerController class. You can also
implement exception handling/code return messages according to what seen during
lecture. You can use curl to invoke the different methods.

Task 4
If you complete successfully, follow the tutorial at the page
http://spring.io/guides/gs/consuming-rest/ to write a REST client and adapt it to
interrogate the RESTful application developed.

Task 5 (extra)
Add Integration testing for your REST application: ideally this should have been the
first step before rewriting the original application. Follow templates from
http://spring.io/guides/tutorials/bookmarks/#_testing_a_rest_service

Additional References
• Useful information for implementing a HATEOAS REST Service and for Securing

a REST Service can be found in the Spring guides:
http://spring.io/guides/tutorials/bookmarks/#_testing_a_rest_service

• For useful information about expected behaviour of REST methods, refer to
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content https://www.rfc-
editor.org/rfc/rfc7231.txt

• If interested in using Jersey for your project, you can see last year's seminar
session for additional information about Jersey (e.g. how to secure REST
methods):
https://kore.fi.muni.cz/wiki/index.php/PA165/Lab_session_Webservices_REST

https://kore.fi.muni.cz/wiki/index.php/PA165/Lab_session_Webservices_REST
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.rfc-editor.org/rfc/rfc7231.txt
http://spring.io/guides/tutorials/bookmarks/#_testing_a_rest_service
http://spring.io/guides/tutorials/bookmarks/#_testing_a_rest_service
http://spring.io/guides/gs/consuming-rest/
http://localhost:8080/spring-rest/

