
PA165 - Lab session – WS-* Webservices
2.12.2014

Goals
a) set-up a WS-* webservice in Spring, b) understand "contract-first" development of
web services.

Prerequisites
Netbeans 7.3.x, Tomcat 7, Java 7, Maven 3

Scenario
The project for this seminar uses Spring-WS to expose an endpoint to manage a series
of Book(s) resources. You will be requested to add new functionality and change the
configuration of the project.
The project uses the "contract-first" approach, so all the domain classes are generated
from the xsd schema present in src/main/resources/books.xsd - all the domain
classes will be recreated based on this file.
There is one integration test class in package cz.muni.fi.pa165.soa.test, you can
use it to test the functionality you are implementing.

Task 1
In the IS you can find the initial application in the file PA165-Fall2014-
Seminar12spring-ws-seminar.zip. Have a look at the application, explore the
different parts. Check also that the application is runnable.
You should be able to import the project in Netbeans and run from it. Alternatively you
can compile & run it from the command line from the root of the project:

module add maven-3.0.5
mvn clean install && mvn spring-boot:run

Upon successful execution you can find a published wsdl file at
http://localhost:8080/ws/books.wsdl

Look at this file and the parameters exposed in the WebServiceConfig class and the
books.xsd schema.

You can use curl to interrogate the endpoint. Create one file called request.xml in
your current directory, containing

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ga="http://muni.cz/pa165/soa">

 <soapenv:Header/>
 <soapenv:Body>
 <ga:getBookRequest>
 <ga:title>The Hitchhiker's Guide to the Galaxy</ga:title>
 </ga:getBookRequest>
 </soapenv:Body>
</soapenv:Envelope>

Use curl from the same directory with curl --header "content-type: text/xml"
-d @request.xml http://localhost:8080/ws

http://localhost:8080/ws/books.wsdl

You should get similar response as the following:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
 <ns2:getBookResponse xmlns:ns2="http://muni.cz/pa165/soa">

<ns2:book><ns2:title>The Hitchhiker's Guide to the Galaxy</ns2:title>
<ns2:isbn>0345391802</ns2:isbn>
<ns2:price>55</ns2:price>
<ns2:author>

<ns2:name>Douglas</ns2:name><ns2:surname>Adams</ns2:surname>
</ns2:author>
<ns2:availability>ORDERED</ns2:availability>
</ns2:book>

 </ns2:getBookResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

From now on, you can use the tests within the application to test requests & responses
and their payloads. For this reason, look also that tests in
cz.muni.fi.pa165.soa.test work as expected, there is one test that tests exactly
the same request and response pair as the one given with the curl command.

Task 2

It would be better to add logging to the application, so that we can log the different
SOAP messages.
Add a file called logback.xml in your src/main/resources folder with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include resource="org/springframework/boot/logging/logback/base.xml"/>
 <logger name="org.springframework.web" level="DEBUG"/>
 <logger name="org.springframework.boot" level="DEBUG" />
 <logger name="org.springframework.ws.server.MessageTracing.sent"
level="TRACE" />
 <logger name="org.springframework.ws.server.MessageTracing.received"
level="DEBUG" />
 </configuration>

Try to play a bit with MessageTracing different logging levels and see the difference
when passing from TRACE, DEBUG and INFO when the endpoint handler methods are
invoked (you can do this either with curl or with the tests).

Task 3

It is a good idea to validate the schema of the responses we are sending out. For this,
you can add an interceptor. Spring-WS gives you the possibility of adding interceptors
for different purposes (e.g. security). We will use in this case the
PayloadValidatingInterceptor.

Open your WebServiceConfig class and create a new interceptor adding the following
method:

http://muni.cz/pa165/soa
http://schemas.xmlsoap.org/soap/envelope/

@Bean
 public PayloadValidatingInterceptor myPayLoadInterceptor() {
 PayloadValidatingInterceptor interceptor = new

PayloadValidatingInterceptor();
 interceptor.setXsdSchema(this.booksSchema());
 interceptor.setValidateRequest(true);
 interceptor.setValidateResponse(true);
 return interceptor;
 }

Then we add the interceptor to the list of endpoint interceptors.

 @Override
 public void addInterceptors(List<EndpointInterceptor> interceptors) {
 interceptors.add(this.myPayLoadInterceptor());
 }

To give an example, without validation the following request will pass through to the
endpoint (even if <name> was not defined in the schema):

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ga="http://muni.cz/pa165/soa">
<soapenv:Header/>

<soapenv:Body>
<ga:getBookRequest>

<ga:title>The Hitchhiker's Guide to the Galaxy</ga:title>
<ga:name>The Hitchhiker's Guide to the Galaxy</ga:name>

</ga:getBookRequest>
</soapenv:Body>

</soapenv:Envelope>

After the addition of the interceptor, the schema will be validated, so in that case you
will get a response with a SOAP Fault, like the following:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring xml:lang="en">Validation error</faultstring>
<detail><spring-ws:ValidationError xmlns:spring-
ws="http://springframework.org/spring-ws">cvc-complex-type.2.4.d:
Invalid content was found starting with element 'ga:name'. No child
element is expected at this point.</spring-ws:ValidationError>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You can read more about different interceptors in Spring-WS documentation:
http://docs.spring.io/spring-ws/docs/2.2.0.RELEASE/reference/htmlsingle/#server-
endpoint-interceptor

http://schemas.xmlsoap.org/soap/envelope/
http://docs.spring.io/spring-ws/docs/2.2.0.RELEASE/reference/htmlsingle/#server-endpoint-interceptor
http://docs.spring.io/spring-ws/docs/2.2.0.RELEASE/reference/htmlsingle/#server-endpoint-interceptor

Task 4

In general, there is a problem with the current implementation: the method
getBookByAuthorNameAndSurname(...) returns one book, but authors can have many
books.
Change the behaviour by returning a list of books. This implies that the schema needs
to be changed so that more books are returned by the endpoint (hint: you can use
minOccurs="0" maxOccurs="unbounded" in the element definition of book in the
response – remember also the read comments in the new generated class to use it!).

Have passing tests for your new implementation.

Task 5

When a book that does not exist in the service is requested, we want to return a SOAP
Fault to the requestor. Currently, if we ask for a book that does not exist in the
catalogue, we will get the following:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<SOAP-ENV:Body>
<ns2:getBookResponse xmlns:ns2="http://muni.cz/pa165/soa"/>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first thing you could try is to throw a RuntimeException() in your endpoint
handler method. If you change your public GetBookResponse getBook(...) method
in BookEndpoint class as follows

[...]
Book book = bookRepository.getBookByTitle(request.getTitle());

 if (book==null){
 throw new RuntimeException("Book " + request.getTitle() + " not
found.") ;
 }

[...]

The SOAP response will now look as follows:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<SOAP-ENV:Body>
<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>
<faultstring xml:lang="en">Book Alice in Wonderland not
found.</faultstring>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This is similar to the response we would like to provide in such cases. We need a more
proogrammatic way to handle exceptions. In our case, we will use the
SoapFaultAnnotationExceptionResolver and using the @SoapFault annotation.

http://schemas.xmlsoap.org/soap/envelope/
http://muni.cz/pa165/soa
http://schemas.xmlsoap.org/soap/envelope/

So we need to create an Exception and then map to the soapfault:

@SoapFault(faultCode = FaultCode.SERVER, faultStringOrReason = "Book not found."
)
public class BookNotFoundException extends RuntimeException {
 public BookNotFoundException(String bookTitle) {

super("Book not found '" + bookTitle);
}

}

now we will throw the exception with

if (book==null){
 throw new BookNotFoundException(request.getTitle());
 }

The response will be like the following:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<SOAP-ENV:Body>
<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>
<faultstring xml:lang="en">Book not found.</faultstring>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You should have created one test for the case in which there are no books to be
returned. For this test, use serverOrReceiverFault() to test for the specific fault
reason.
Usually you will need to map also SoapFaultAnnotationExceptionResolver as a
bean, but in Spring-boot standard configuration for Spring-WS. You can read about
exceptions in Spring-WS at http://docs.spring.io/spring-
ws/docs/2.2.0.RELEASE/reference/htmlsingle/#server-endpoint-exception-resolver

Task 6

Similarly to books.xsd, create another schema customers.xsd in which you can
report different properties such as name, surname, address for one customer. Each
customer will have a list of books (defined in books.xsd).
Expose another endpoint that returns the list of customers with the books that have
been leased.

Task (Extra)

If you have completed all the tasks, you can look at how to consume a web service,
you can adapt a client application from the tutorial:
http://spring.io/guides/gs/consuming-web-service/

http://spring.io/guides/gs/consuming-web-service/
http://docs.spring.io/spring-ws/docs/2.2.0.RELEASE/reference/htmlsingle/#server-endpoint-exception-resolver
http://docs.spring.io/spring-ws/docs/2.2.0.RELEASE/reference/htmlsingle/#server-endpoint-exception-resolver
http://schemas.xmlsoap.org/soap/envelope/

