
+

Intro to Service Oriented
Architecture (SOA)

Bruno Rossi & Juha Rikkilä

PA165 Enterprise Java
2014-2015

+
Objectives and content of this part

Get “the big picture” of SOA and
related concepts

 Clients and servers

 SOA, why and why not

 Application development view

 Technology stack view

 Basic set of concepts

Objectives Content

Distributed Computing Evolution

Client-
Server(C/S) silos

Web-based
computing

Web Services/Peer-to-Peer

Servers

Clients

Clients

Servers

Internet PDA Cell
Phone

Server

LaptopKiosk

Workstation

+
Evolution of software development
/programming

Procedural
computing

Service
oriented

computing
(SOC)

Object
oriented

computing
(OOC)

“Instructive”
computing

Hardware
logic

Execution
logic

Entity/object
logic

Value/servic
e logic

+

Code / script
execution

XML

Browsing

HTML

TCP/I
P

File access

Technology

Applications

Text Hypertext Applications
File transfer, E-mail

Web pages
Web services

Internet evolution

+
Service Oriented Computing (SOC)

 SOC is an emerging cross-disciplinary
paradigm for distributed computing that is
changing the way software applications are
designed, architected, delivered and consumed

 SOC is a new computing paradigm that utilizes
services as the basic constructs to support
the development of rapid, low-cost and easy
composition of distributed applications even in
heterogeneous environments

6

S. Dustdar and B. J. Krämer, Eds., “Introduction to Special Issue on Service Oriented Computing (SOC),” ACM
Trans. Web, vol. 2, no. 2, pp. 10:1–10:2, May 2008.

+
Browsing

Web Server

Data
storage

GET /path/file.html HTTP/1.1
Host: www.example.com

http://www.example.com/path/file.html

Client

Brows
er

/home/www/path/file.html

file.html

+Code / script / application execution

 Server

Data
storage

Client

Browser

Application
client

container

Applicatio
n client

Web container

Servlet JSP

EJB container

EJB EJB

JSP = JavaServer Pages
EJB = Enterprise Java Beans

+
Service execution (1/2)

Data
storage

Client

Brows
er

Applicati
on client
container

Applicati
on client

Server

Service orchestration
and choreography

Web container

Servlet JSP

EJB container

EJB EJB

+
Service execution (2/2)

Data
storage

Client

Brows
er

Applicati
on client
container

Applicati
on client

Server
Service

orchestration and
choreography

Web container

Servlet JSP

EJB container

EJB EJB

+
Some SOA definitions (1/2)

A Service-Oriented Architecture (SOA) facilitates the creation of flexible, re-usable assets for
enabling end-to-end business solutions. (Open Group Standard: SOA Reference Architecture, 2011)

Contemporary SOA represents an open, agile extensible, federated, composable architecture
comprised of autonomous, QoS-capable, vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web services. (Erl, T., Service-oriented Architecture:
Concepts, Technology and Design, 2005)

Service-Oriented Architecture is an IT strategy that organizes the discrete functions contained
in enterprise applications into interoperable, standards-based services that can be combined and
reused quickly to meet business needs. (BEA white paper, 2005 -> 2008 Oracle)

SOA is a conceptual business architecture where business functionality, or application logic,
is made available to SOA users, or consumers, as shared, reusable services on an IT network.
“Services” in an SOA are modules of business or application functionality with exposed
interfaces, and are invoked by messages. (Marks, E.A., Bell, M., Service Oriented Architecture (SOA): A
Planning and Implementation Guide for Business and Technology, 2006)

+
Some SOA definitions

Service-oriented architecture (SOA) is a set of principles and methodologies for designing
and developing software in the form of interoperable services. These services are well-defined
business functionalities that are built as software components (discrete pieces of code and/or
data structures) that can be reused for different purposes. SOA design principles are used during
the phases of systems development and integration. (Wikipedia)

SOA is an architectural style whose goal is to achieve loose coupling among interacting
software agents. A service is a unit of work done by a service provider to achieve desired end
results for a service consumer. Both provider and consumer are roles played by software agents
on behalf of their owners. (O’Reilly XML.COM)

There is no unique definition: some refer to SOA as an architectural style,
others as a paradigm, principles and methodologies, IT strategy, etc...

+
What is SOA

SOA is an architectural style,

realized as a collection of collaborating
agents, each called a service,

whose goal is to manage complexity and
achieve architectural resilience and

robustness through ideas such as loose
coupling, location transparency, and

protocol independence.
(IBM definition of SOA)

+
Service

 A service is an entity that has a description, and that is
made available for use through a published interface that
allows it to be invoked by a service consumer.

 A service in SOA is an exposed piece of functionality with
three properties:
 The interface contract to the service is platform-independent.
 The service can be dynamically located and invoked.
 The service is self-contained. That is, the service maintains its

own state.

+
Principles of SOA

 Services
 Share a formal contract
 Are loosely coupled
 Abstract underlying logic
 Are composable
 Are reusable
 Are autonomous
 Are stateless
 Are discoverable

+
A SOA Characterization

+
A SOA Technology view:
WS* Protocol Stack

Transport
HTTP

Discovery
UDDI

Description
WSDL

Message Format
SOAP

Encoding
XML

Orchestration and
Choreography

WSCL, WSCI, BPEL,
WS-Coordination,

BPML, BPSS

S
e
cu

rity

Q
u
a
lity

 o
f S

e
rv

ice

Tra
n
sa

ctio
n
s

M
a
n
a
g
e
m

e
n
t

WSCL Web Services Conversation
Language

WSCI Web Service Choreography
Interface

BPEL Business Process Execution
Language

WS Web Services
BPML Business Process Modeling

Language
BPSS Business Process Specification

Schema
UDDI Universal Description, Discovery

and Integration
WSDL Web Services Description

Language
SOAP Simple Object Access Protocol
XML eXtensible Markup Language
HTTP Hypertext Transfer Protocol

+
Why

 “The quest is to find a solution that simplifies
development and implementation, supports effective
reuse of software assets, and leverages the
enormous and low-cost computing power now at our
fingertips. While some might claim that service-oriented
architecture (SOA) is just the latest fad in this illusive quest,
tangible results have been achieved by those able to
successfully implement its principles”

 “companies that have embraced SOA have eliminated huge
amounts of redundant software, reaped major cost savings
from simplifying and automating manual processes, and
realized big increases in productivity”

(Open Source SOA, Jeff Davis)

+

REpresentational State
Transfer (REST)
Bruno Rossi & Juha Rikkilä

PA165 Enterprise Java
2014-2015

+
Objectives and content

Obtain overall understanding of
the REST architectural style and
its implementation in web.

 Distributed systems

 REST, RESTFUL

 URI

 HTTP, HTTP methods

 Cache, Proxy, Gateway

 Security

 Summary, the six constraints,
the principles of the uniform
interface

Objectives Content

20

+
Distributed Systems

Distributed systems

….

CORBA

Broker Architecture Web Services

Peer-to-Peer
Systems

Service-Oriented
Systems

….

RESTful Web
Services

WS*Web Services

REST=Representational State Transfer

21

+
REST

REpresentational
State Transfer
 Named by Roy Fielding in

his Ph.D thesis

“Architectural Styles and the
Design of Network-based
Software Architectures”

 http://ics.uci.edu/~fielding/pubs/dissertation/top.htm

 it is an architectural style:
REST is a sort of reverse-
engineering of how the Web
works. HTTP and URIs were
written with the REST principles
in mind before they were
formalized

 The original idea behind
Representational State Transfer
is to mimic the behaviour of
Web applications : as a net of
Web pages and links, resulting
in the next page (state change)

 REST is thoughts in the context
of HTTP, but it is not limited to
that protocol.

22

+
WS* vs. RESTful Web services

WS*Web Services
Middleware

Interoperability
Standards

RESTful Web
Services

Architectural style
for the Web

23

+
REST & SOA

24

 How does REST fit in the SOA
characterization?

 What about the SOA
principles?

Services

Share a formal contract

Are loosely coupled

Abstract underlying logic

Are composable

Are reusable

Are autonomous

Are stateless

Are discoverable

+
Browsing

Web Server

Data
storage

GET /path/file.html HTTP/1.1
Host: www.example.com

http://www.example.com/path/file.html

Client

Brows
er

/home/www/path/file.html

file.html

25

+
An example

HTTP Client
(Web Browser)

Web Server
(Application

server)
Database

GET /book?ISBN=222

POST /order

PUT/order?612

301 Location: /order/612

SELECT FROM books
WHERE isbn=222

INSERT INTO orders

UPDATE orders
WHERE id=612

26

+
REST Maturity Models

http://martinfowler.com/articles/richardsonMaturityModel.html

27

http://martinfowler.com/articles/richardsonMaturityModel.html

+
REST Principles (1/4)

 REST services are stateless. From Fieldings' thesis:
“each request from client to server must contain all of the
information necessary to understand the request, and
cannot take advantage of any stored context on the server”

 So, server sessions should not be used → all needed to
process a request should be available in the request

 Messages are self-describing

 No need to start negotiation to understand how to
communicate with a service

 Specific to HTTP, URI have semantics

28

+
REST Principles (2/4)

 In REST, resources are manipulated through the
exchange of representations of the resources
 The components in the system exchange data (usually

XML documents) → this represents a resource.

 REST-based architectures communicate primarily
through the transfer of representations of resources
 Resources have multiple representations (e.g. XML, JSON,

XHTML, JPEG img)

29

+
REST Principles (3/4)

 RESTful services have a uniform interface
 No WSDL in REST
 Standard HTTP methods GET, POST, PUT, DELETE, etc...
 Protocol independence (although by default HTTP is relied

on)

 REST-based architectures are built with
resources

→ Resources are uniquely identified by URIs

30

+
REST Principles (4/4)

 Hypermedia as the engine of application
state (HATEOS)

 Fielding defines hypertext as: “the simultaneous
presentation of information and controls such that the
information becomes the affordance through which the user
(or automaton) obtains choices and selects actions”

 This is important because the implication is that: every
resource returned by a server will allow to follow the URIs to
any next step

See http://spring.io/understanding/HATEOAS

http://spring.io/guides/tutorials/bookmarks/#_building_a_hateoas_rest_service

31

http://spring.io/understanding/HATEOAS
http://spring.io/guides/tutorials/bookmarks/#_building_a_hateoas_rest_service

+
URI, example

http://localhost/customers/123

Resource Collection name

Primary key

32

+
HTTP Methods,
for both collection and single item

GET
to retrieve information
Retrieves a given URI
idempotent, should not initiate a
state
Cacheable

POST
to add new information
Add the entity as a
subordinate/append to the
POSTed resource

PUT
to update information
Full entity create/replace used
when you know the “id”

DELETE
to remove (logical) an entity

33

+
REST Methods

34

Method Collection of resources, e.g.
<host:port>/<context>/resources

Single item, e.g.
<host:port>/<context>/resources/1

@GET Get a list of all the resources Retrieve data for resource with id 1

@PUT Update the collection with a new one Update the resource with id 1

@POST Create a new member resource Create a sub-resource under resource
with id 1

@DELETE Delete the whole collection Delete the resource with id 1

@HEAD Retrieve meta-data information according
to HTTP head request

Retrieve data for resource with id 1

+
Safety and Idempotence

 The term "safe" means that if a given method is called, the
resource state on the server remains unchanged

 By specifications, GET and HEAD should always be safe –
clearly it is up to the developers not to violate this hidden
specification

 PUT, DELETE are considered unsafe, while for POST
generally depends

35

+
Safety and Idempotence

 The word "idempotent" means that, independently from
how many times a given method is invoked, the end result is
the same.

 GET and HEAD are an example of an idempotent operation

 PUT is as well idempotent: if you add several times the
same resource, it should be only inserted once

DELETE is as well idempotent: issuing delete several times
should yield the same result – the resource is gone (but what
about DELETE /items/last ?)

 POST is generally not considered an idempotent operation

36

+
HTTP Request/Response As REST

Request
GET /customer/{id}/items HTTP/1.1
Host: localhost
Accept: application/xml

Response
HTTP/1.1 200 OK
Date: Fri, 22 Jun 2013 17:21:35 GMT
Server: Apache/1.3.6
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0"?>
<items xmlns="…">
 <item>…</item>
 …
</items>

Method

Representation

State
transfer

Resource

37

+
JAX-RS (Jersey) vs Spring

JAX-RS

@Path("/customers")
@Singleton
public class CustomersController {

 @GET
 @Path("customers")
 @Produces(MediaType.TEXT_PLAIN)
 public String getPlain() {

 }

}

38

Spring

@RestController
@RequestMapping("/customers")
public class CustomersController {

 @RequestMapping(value="customers",
 method=RequestMethod.GET,
 headers="Accept=text/plain")
 public String getPlain() {

 }
 ...
}

or produces={MediaType.TEXT_PLAIN}

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

+
Multiple Representations

 Data in a variety of formats
 XML
 JSON (JavaScript Object Notation)
 XHTML

 Content negotiation
 Accept header
GET /customers
Accept: application/json

 URI-based
GET /customers.json

 parameter-based

http://localhost/customers?type=json

39

@Produces(MediaType.TE
XT_PLAIN [, more-types])

For a method annotated with
@GET, specifies the type of data
that is returned

@Consumes(type [, more-
types])

The type of data that is consumed
by the method, for example,
"text/plain"

+
Content Negotiation

 Example in JAX-RS

@Consumes("text/*")
@Path("/customer")
public class Customer {
 @POST
public String stringCustomer(String customer)
{...}

@Consumes("text/xml")
@POST
public String xmlCustomer(Customer customer)
{...}

}

40

POST /customer
content-type: text/xml

<customer name="Roy" surname="Fielding"/>

+
Content Negotiation

 Example in JAX-RS

@Produces("text/*")
@Path("/customer")
public class Customer {
 @GET
public String get()
{...}

@Produces("text/xml")
@GET
public String getXML()
{...}

}

41

GET /customer
Accept: text/xml

+
Content Negotiation

42

Configuration example in Jersey
in web.xml

<init-param>

<param-name>
jersey.config.server.mediaTypeMappin
gs
</param-name>
<param-value>txt : text/plain, xml :
application/xml, json :
application/json
</param-value>

</init-param>
....

Configuration example in Spring

@Configuration

@EnableWebMvc

public class WebConfig extends
WebMvcConfigurerAdapter {

 @Override

 public void
configureContentNegotiation(ContentNegotiation
 Configurer configurer) {

 configurer.favorPathExtension(false).

 favorParameter(true).
parameterName("mediaType").
ignoreAcceptHeader(true).
defaultContentType(MediaType.APPLICATION_JSON)
.mediaType("txt",MediaType.TEXT_PLAIN).
mediaType("xml",MediaType.APPLICATION_XML).
mediaType("json",MediaType.APPLICATION_JSON);

 }

}

+
Managing Exceptions & Return Codes

 It is responsibility of the developer to provide consistent
behaviour of their REST API:

 Successful HTTP response code numbers go from 200 to 399. The creation
will return 200, “OK” if the object returned is not null. 204, “No Content” is
returned when a null object was retrieved. As well as if the return is of type void
204, “No Content” is returned.

 HTTP error response code numbers go from 400 to 599. A 404 “Not Found”
response code will be sent back to the client if the resource requested is not
found. A bad request "400" is sent back in case of bad parameters. All the codes
in the range 5xx indicate internal errors of the application.

43

+
Managing Exceptions in JAX-RS

 In JAX-RS you can use the class
javax.ws.rs.core.Response.ResponseBuilder to return appropriate
HTTP codes, e.g.:

44

....
ResponseBuilder builder = Response.ok(object);
builder.header("header-name", "value"); // set some header value
return builder.build();
....

+
Managing Exceptions in JAX-RS

you can use the enum
javax.ws.rs.core.Response.Status
(https://docs.oracle.com/javaee/6/api/javax/ws
/rs/core/Response.Status.html) to return error
codes, example:

45

return Response.status(Status.GONE).build();

+
Managing Exceptions in JAX-RS

 You can also throw exceptions that will be handled by the
JAX-RS runtime , you can use
javax.ws.rs.WebApplicationException:

46

...
if (object == null) {
 throw new WebApplicationException(Response.Status.NOT_FOUND);
}
...

+
Managing Exceptions in JAX-RS

 … or you can use an exception mapper by implementing
and registering instances of javax.ws.rs.ext.ExceptionMapper:

47

@Provider
public class EntityNotFoundMapper implements
 ExceptionMapper<EntityNotFoundException> {

 public Response toResponse(EntityNotFoundException e) {
 return Response.status(Response.Status.NOT_FOUND).build();
 }

 }

+
Managing Exceptions in Spring

 Similarly to JAX-RS you can manage
exceptions/return codes in different ways. Easiest
ways is per single exception:

48

@ResponseStatus(value=HttpStatus.NOT_FOUND, reason="404 Not Found")
 public class CustomerNotFoundException extends RuntimeException {
 // ...
 }

@RequestMapping(value="customers/{id}", method=RequestMethod.GET,
 headers="Accept=text/plain")
public String getCustomer(@PathVariable("id") long id) {

 customer = customersService.getCustomerById(id);
 if (customer == null) throw new OrderNotFoundException(id);

}

+
Managing Exceptions in Spring

 Another way is to manage exceptions thrown in
the same controller when managing requests

49

 @RestController
 public class MyController {

 ...
 @ResponseStatus(value=HttpStatus.NOT_FOUND, reason="404 Not Found")
 @ExceptionHandler(CustomerNotFoundException.class)
 public void notFound() {
 ...
 }
 ...
}

+
Managing Exceptions in Spring

 Another way is to have a global advice using
@ControllerAdvice that will manage exceptions for
all controllers

50

@ControllerAdvice
class GlobalControllerExceptionHandler {
 @ResponseStatus(HttpStatus.NOT_FOUND)
 @ExceptionHandler(CustomerNotFoundException.class)
 public void handleCustomerNotFound() {
 ...
 }
}

+
Managing Exceptions in JAX-RS

 See http://www.w3.org/Protocols/rfc2616/rfc2616.html for
the expected behaviour of GET, POST, PUT, DELETE, HEAD

51

http://www.w3.org/Protocols/rfc2616/rfc2616.html

+
Caching

Client Server

Basic setup

Caching:
Server

Caching:
client Server

Client

Caching:
client

Caching:
Server

Caching options

52

+
Example of Caching in JAX-RS

53

@Path("/items/{id}")
@GET
public Response getItem(@PathParam("id") long id){

 Item item = ItemService.getItem(id);

 CacheControl cc = new CacheControl();
 cc.setMaxAge(86400); // 86400 secs-> one day
 cc.setPrivate(true); // only last in the call line should cache the resource

 ResponseBuilder builder = Response.ok(item);
 builder.cacheControl(cc);
 return builder.build();
}

+
Example of Caching in JAX-RS

54

@Path("/items/cond/{id}")
@GET
public Response getItem(@PathParam("id") long id, @Context Request request){

 Item item = ItemService.getItem(id);
 CacheControl cc = new CacheControl();
 cc.setMaxAge(86400);

 EntityTag etag = new EntityTag(Integer.toString(item.hashCode()));
 ResponseBuilder builder = request.evaluatePreconditions(etag);

 // if builder is null then the cached resource changed
 if(builder == null){
 builder = Response.ok(item); // this will return HTTP 200 OK
 builder.tag(etag);
 }

 builder.cacheControl(cc); // if not send HTTP 304 Not Modified
 return builder.build();
}

+
Example of Caching in Spring

55

public String myHandleMethod(WebRequest request, Model model) {
 String eTag = // application-specific calculation

 if (request.checkNotModified(eTag)) {
 // shortcut exit - no further processing necessary
 return null;
 }

 // further request processing, actually building content
 model.addAttribute(...);
 return "myViewName";
 }

From http://docs.spring.io/spring/docs/current/javadoc-
api/org/springframework/web/context/request/WebRequest.html#checkNotModifie
d-java.lang.String-

Other more advanced ways → using EhCache

+
Example of Caching in JAX-RS

56

> curl -X GET -i http://localhost:8084/JerseyREST/service/items/cond/1

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
ETag: "3242771"
Cache-Control: no-transform, max-age=86400
Content-Type: text/plain
Content-Length: 4
Date: Thu, 20 Nov 2014 12:11:35 GMT

> curl -i -X GET http://localhost:8084/JerseyREST/service/items/cond/1
--header 'If-None-Match: "3242771"'

-Match: "3242771"'
HTTP/1.1 304 Not Modified
Server: Apache-Coyote/1.1
ETag: "3242771"
Cache-Control: no-transform, max-age=86400
Date: Thu, 20 Nov 2014 12:16:05 GMT

http://localhost:8084/JerseyREST/service/items/cond/1
http://localhost:8084/JerseyREST/service/items/cond/1

+Let's dig into the details:
Oracle Tutorials on RESTful Services with
JAX-RS

Web Services:

http://docs.oracle.com/javaee/7/tutorial/doc/partwebsvcs.htm

Building RESTful Web Services with JAX-RS:

http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs.htm#GIEPU

Accessing REST Resources with the JAX-RS Client API:

http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs-client.htm
#BABEIGIH

http://docs.oracle.com/javaee/7/tutorial/doc/partwebsvcs.htm
http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs.htm#GIEPU
http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs-client.htm#BABEIGIH
http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs-client.htm#BABEIGIH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

