
Testing

PA165
Dec 9, 2014
Petr Adámek, Tomáš Pitner

Testing of Applications

˂ Testing verifies compliance with the specification

and implementation of customer expectations.

˂ It is an important part of the quality management in

software development.

˂ Unlike formal verification does not allow to detect

all potential errors.

<2>

Základní pravidla

˂ Tests should be reproducible.

˂ Somebody else should be able to perform the same tests with the

same results.

˂ Tests should be deterministic, i.e. they should have

the same input conditions at the beginning.

˂ Tests should be independent, i.e. not to be

influenced by each other.

˂ Usually by setting the same input conditions for each test

˂ Tests should be repeatable cheaply.

˂ It usually means running in an automated way.

<3>

Modes of Testing

˂ Manual testing:

˂ low entry costs;

˂ expensive repetitions;

˂ difficult to ensure reproducibility, determinism and

independence

˂ Automated testing:

˂ high input costs;

˂ cheap repetition;

˂ easy to ensure reproducibility, determinism and

independence.

<4>

Types of Testing According to Goals

˂ Unit testing

˂ Does the unit work independently on the context?

˂ Integration testing

˂ Does the component work integrated in its environment?

˂ Functional testing

˂ Does it fulfill the functional requirements?

˂ Acceptance Testing

˂ Is it good for the customers? Will they accept it?

<5>

Types of Testing According to Goals

˂ Performance and scalability testing

˂ Testing the user-friendliness

˂ Security testing

<6>

Unit Testing

˂ In unit testing we try to test the individual

components of the system being developed at the

lowest level.

˂ Individual test components should be isolated from

its surroundings to avoid the influence of the

surroundings on the test component.

˂ Interaction with the environment is simulated using

mock-objects that simulate the behavior of the

neighborhood in a particular test scenario.

˂ The better the decomposition is done, the easier the

unit testing is.

<7>

Tools for Unit Testing

˂ JUnit

˂ TestNG

<8>

Example

public class CalculatorTest {

 private Calculator c;

 @Before

 public void setUp() {

 c = new Calculator();

 }

 @Test

 public void testDivide() {

 assertEquals(9, c.divide(99, 10));

 assertEquals(10, c.divide(100, 10));

 }

 @Test(expected = IllegalArgumentException.class)

 public void testDivideByZero() {

 c.divide(100, 0);

 }

}

<9>

Basic Rules

˂ The test outputs are always Yes / No (Boolean)

˂ First test, then code (see XP and TDD)

˂ When the error is to be corrected: first test, then fix

(protection against regression)

˂ Trivial get / set methods are not tested

˂ Test all non-standard situations and limit values

˂ Error messages and comments not always needed

˂ Tests runs after every change

<10>

Interactions with Environment

˂ Components should be tested in isolation.

˂ But it is necessary to simulate the kind of

interaction with the environment.

˂ That is what Mock objects do.

˂ These objects must be type compatible with

simulated component:

˂ Inheritance

˂ Implementing an interface (preferable)

˂ Mock objects can be created manually (tedious), or

through tooling:

˂ Mockito, EasyMock, JMock

<11>

Example (manually created Mock objects)

public class CurrencyConvertorTest {

 @Test

 public void testConvert() {

 ExchangeRateTable exchangeRateTable = new ExchangeRateTable() {

 public void setExchangeRate(Currency currency, BigDecimal exchangeRate) {

 throw new UnsupportedOperationException("Not supported yet.");

 }

 public BigDecimal getExchangeRate(Currency currency) {

 return BigDecimal.valueOf(28.2);

 }

 };

 CurrencyConvertor convertor = new CurrencyConvertor(exchangeRateTable);

 Currency czk = Currency.getInstance("CZK");

 BigDecimal actualResult = convertor.convert(czk, BigDecimal.valueOf(10));

 BigDecimal expectedResult = BigDecimal.valueOf(282.0);

 assertEquals(expectedResult, actualResult)

 }

}

<12>

Example (Mockito)

@RunWith(MockitoJUnitRunner.class)

public class CurrencyConvertorTest {

 @Mock

 ExchangeRateTable exchangeRateTable;

 @Test

 public void testConvert() {

 when(exchangeRateTable.getExchangeRate(czk)).

 thenReturn(BigDecimal.valueOf(28.2));

 CurrencyConvertor convertor = new CurrencyConvertor(exchangeRateTable);

 Currency czk = Currency.getInstance("CZK");

 BigDecimal actualResult = convertor.convert(czk, BigDecimal.valueOf(10));

 BigDecimal expectedResult = BigDecimal.valueOf(282.0);

 assertEquals(expectedResult, actualResult)

 }

}

<13>

Unit Testing in Java EE

˂ For Java EE applications, it is necessary to take into

account the existence of the container.

˂ Tests outside the container - test only business logic, not

behavior depending on the container (such as transaction

management, authorization, etc.)

˂ Tests in a container - will test everything, but this kind of

testing for unit tests not fit.

˂ In testing outside of the container concept is used

mock objects which simulate the behavior of the

container.

<14>

Unit Testing - Data

˂ How to test data persistence layer:

˂ Mock objects (easy with JPA or other libraries and frameworks,

complicated by the low-level JDBC).

˂ Database is stored in memory (easy for JPA, with low-level

JDBC may be a problem with the SQL dialect).

˂ Do not forget to provide the same initial conditions

(state database is always the same initial state).

˂ What can help

˂ DBUnit

˂ Abstract DAO

<15>

What else can help?

˂ Tools for measuring test coverage

˂ Line Coverage

˂ Branch Coverage

˂ Tools for generating test data

˂ Extended set of assert methods

˂ Etc.

<16>

Integration Testing

˂ Integration testing is used to verify the correct

interaction of individual components that are

assembled and the system behaves as expected in

its specification.

˂ See also continuous integration

<17>

Functional Testing

˂ Functional testing is used to verify the functionality
of the end-user perspective.

˂ Mostly performed at the user interface level

˂ Rational Functional Tester - web GUI+
˂ http://www-

01.ibm.com/software/awdtools/tester/functional/ind

ex.html

˂ Selenium IDE – web
˂ http://selenium.openqa.org/

˂ Marathon – GUI
˂ http://marathonman.sourceforge.net/

˂ Rational Robot - GUI(for legacy applications),
Rational Quality Manager, JWebUnit

<18>

Acceptance Testing

˂ Customer acceptance testing verifies that the

application meets customer’s requirements and

expectations.

˂ Absence of acceptance testing (or its

underestimation and lack of design) almost always

leads to future disputes and problems.

˂ Customers unfortunately have a tendency to

underestimate it. The non-compliance of the

implementation with the customer’s requirements

so often comes at the moment of production

deployment :-(.

<19>

Performance and Scalability Testing

˂ Performance testing verifies system throughput and
response time at high loads.

˂ Part of the specification should be the definition of
the throughput and response times of the
prescribed load.

˂ Rational Performance Tester (+ extensions)

˂ http://www-

01.ibm.com/software/awdtools/tester/perfo

rmance/index.htm

˂ Rational Service Tester for SOA Quality (functional
testing, performance testing +)

˂ JMeter - http://jakarta.apache.org/jmeter/

<20>

Usability Testing

˂ In the USA a common thing, in Europe still not so

obvious and Asia is likely to overtake Europe in this.

˂ The definition of the prototype of the target user.

˂ Select a group of test users (test sample).

˂ Test user is given a list of tasks that are trying to

solve without the help of someone else.

˂ His/her behavior is monitored and evaluated.

˂ See Štefkovič, M.: Usability of Web applications.

https://is.muni.cz/auth/th/166042/fi_b/ (Bc. Thesis)

<21>

https://is.muni.cz/auth/th/166042/fi_b/
https://is.muni.cz/auth/th/166042/fi_b/
https://is.muni.cz/auth/th/166042/fi_b/

Security Testing

˂ Security testing checks resistance against various

security attacks.

˂ Tools:

˂ Rational AppScan - web app security testing

˂ http://www-

01.ibm.com/software/awdtools/appscan/

<22>

Questions

?

<23>

