<embed/it> Bl

ERS/,
.‘_':.‘\\I Sr /_,?
< 4
% H
+, S
Arana o

PA165
Dec 9, 2014
Petr Adamek, Tomas Pitner

Testing of Applications

< Testing verifies compliance with the specification
and implementation of customer expectations.

< It is an important part of the quality management in
software development.

< Unlike formal verification does not allow to detect
all potential errors.

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q ‘P‘ 5}& ‘?—
= i /s
e! ! ! e 1 ceed, Zreeer Feeeeccccccccccccccssssccccccccsssssseccccctsssssscccccctsssssscccccctssssseee <2>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Zakladni pravidla

< Tests should be reproducible.

< Somebody else should be able to perform the same tests with the
same results.

< Tests should be deterministic, i.e. they should have
the same input conditions at the beginning.

< Tests should be independent, i.e. not to be
influenced by each other.

< Usually by setting the same input conditions for each test

< Tests should be repeatable cheaply.

< [t usually means running in an automated way.

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q d" § A
= i /s
e! ! ! e 1 ceed, Zreeer R R X TP PR) <3>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Modes of Testing

< Manual testing:
< low entry costs;
< expensive repetitions;

< difficult to ensure reproducibility, determinism and
iIndependence

< Automated testing:
< high input costs;
< cheap repetition;

< easy to ensure reproducibility, determinism and
iIndependence.

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q ‘P‘ 5}& ‘?—
= i /s
e! ! ! e 1 ceed, Zreeet $eeecssssscccccccccccccccssssssssccccccccccssssssssssssscccccccssssssssssssses <4>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Types of Testing According to Goals

< Unit testing

< Does the unit work independently on the context?

< Integration testing
< Does the component work integrated in its environment?

< Functional testing
< Does it fulfill the functional requirements?

< Acceptance Testing
< lIs it good for the customers? Will they accept it?

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q ‘P‘ 5}& ‘?—
= i /s
e! ! ! e 1 ceed, Zreeer Feeeeccccccccccccccssssccccccccsssssseccccctsssssscccccctsssssscccccctssssseee <5>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Types of Testing According to Goals

< Performance and scalability testing
< Testing the user-friendliness
< Security testing

‘\\\f\'iR.S‘f);7 B ARTIS WmU%
e i s 7.
o = r 2 /A
<empeq/it> = 2.5 ettt ettt ettt ettt ettt eeeeeateaaaasra—————————————————————rtttttaereeees <6>
K S §
&y 2 g, <
ANA® Tas MAS™

NI

Unit Testing

< In unit testing we try to test the individual
components of the system being developed at the
lowest level.

< Individual test components should be isolated from
its surroundings to avoid the influence of the
surroundings on the test component.

< Interaction with the environment is simulated using
mock-objects that simulate the behavior of the
neighborhood in a particular test scenario.

< The better the decomposition is done, the easier the
unit testing is.

i/

‘\‘\\T ER St - ARTIS W”o%
- 'Q ’. § kS
£ i %
<em e 1 > ceed, 2»---7.‘3 R R R) <7>
7 & % >
ﬁf‘i’ ?-\Sé G@“’& "“5
JANA® Tag st

Tools for Unit Testing

< JUnit
< TestNG

\VERS/} CJ[\%USU%
o

&
e s %
> g 2
= P+]
Zreeed R R X TP PR) <8>
&é‘* % F
%, &

<embed/it> -,

Krana % RPN

public class CalculatorTest ({

private Calculator c;

@Before
public void setUp() {
c = new Calculator();

@Test

public void testDivide () {
assertEquals(9, c.divide(99, 10));
assertEquals (10, c.divide (100, 10));

@Test (expected = IllegalArgumentException.class)
public void testDivideByZero () {
c.divide (100, 0);

Basic Rules

< The test outputs are always Yes / No (Boolean)
< First test, then code (see XP and TDD)

< When the error is to be corrected: first test, then fix
(protection against regression)

< Trivial get | set methods are not tested

< Test all non-standard situations and limit values

< Error messages and comments not always needed
< Tests runs after every change

‘\\v ERSy z, B ARTIS ”‘%%
- 'Q ’. § kS
= i]
<em e 1 > 000-751 2»»--7.‘3 ,é ooo <1 O>
7) 2, =
ﬁf‘i’ ?-\Sé G@“’& "“5
ZANA® Trag et

Interactions with Environment

< Components should be tested in isolation.

< But it is necessary to simulate the kind of
interaction with the environment.

< That is what Mock objects do.

< These objects must be type compatible with
simulated component:
< Inheritance
< Implementing an interface (preferable)

< Mock objects can be created manually (tedious), or
through tooling:
< Mockito, EasyMock, JMock

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q d" § A
= i /s
e! ! ! e 1 ceed, Zreeer R R X TP PR) <11 >
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Example (manually created Mock objects)

public class CurrencyConvertorTest ({

@Test
public void testConvert () {
ExchangeRateTable exchangeRateTable = new ExchangeRateTable () {

BigDecimal exchangeRate) {

public void setExchangeRate (Currency currency,
) ;

throw new UnsupportedOperationException (

}

public BigDecimal getExchangeRate (Currency currency) {
return BigDecimal.valueOf (28.2);

}
}s

CurrencyConvertor convertor = new CurrencyConvertor (exchangeRateTable)

Currency czk = Currency.getlInstance ("CZK");

BigDecimal actualResult = convertor.convert (czk, BigDecimal.valueOf (10))

BigDecimal expectedResult = BigDecimal.valueOf (282.0);
assertEquals (expectedResult, actualResult)

Example (Mockito)

@RunWith (MockitoJUnitRunner.class)
public class CurrencyConvertorTest {

@Mock
ExchangeRateTable exchangeRateTable;

@Test
public void testConvert () {

when (exchangeRateTable.getExchangeRate (czk)) .
thenReturn (BigDecimal.valueOf (28.2));

CurrencyConvertor convertor = new CurrencyConvertor (exchangeRateTable) ;
Currency czk = Currency.getInstance ("CZK");

BigDecimal actualResult = convertor.convert (czk, BigDecimal.valueOf (10));
BigDecimal expectedResult = BigDecimal.valueOf (282.0);

assertEquals (expectedResult, actualResult)

Unit Testing in Java EE

< For Java EE applications, it is necessary to take into
account the existence of the container.

< Tests outside the container - test only business logic, not
behavior depending on the container (such as transaction
management, authorization, etc.)

< Tests in a container - will test everything, but this kind of
testing for unit tests not fit.
< In testing outside of the container concept is used
mock objects which simulate the behavior of the
container.

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q d" § A
= i /s
e! ! ! e 1 ceed, Zreeet Feeeeccccccccccccccssssccccccccsssssseccccctsssssscccccctsssssscccccctssssseee <14>
kA & % 5
%, A Ty, e
JANA® g pas®

NI

Unit Testing - Data

< How to test data persistence layer:

< Mock objects (easy with JPA or other libraries and frameworks,
complicated by the low-level JDBC).

< Database is stored in memory (easy for JPA, with low-level
JDBC may be a problem with the SQL dialect).

< Do not forget to provide the same initial conditions
(state database is always the same initial state).

< What can help
< DBUnit
< Abstract DAO

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q d" § A
= i /s
e! ! ! e 1 ceed, Zreeer R R X TP PR) <15>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

What else can help?

< Tools for measuring test coverage
< Line Coverage
< Branch Coverage

< Tools for generating test data
< Extended set of assert methods
< Etc.

‘\‘\\T ERSy 7:1 - ARTIS W”o%
L] 'Q ‘P‘ 5}& ‘?—
= i]
<em e 1 > 000-751 f»-oo;‘}‘ ’é ooo <1 6>
7 =
’&‘4. \Sé "2@0& -“5
TANA B Tras wast

Integration Testing

< Integration testing is used to verify the correct
interaction of individual components that are
assembled and the system behaves as expected in
its specification.

< See also continuous integration

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q ‘P‘ 5}& ‘?—
= i /s
e! ! ! e 1 ceed, Zreeer Feeeeccccccccccccccssssccccccccsssssseccccctsssssscccccctsssssscccccctssssseee <1 7>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Functional Testing

< Functional testing is used to verify the functionality
of the end-user perspective.

< Mostly performed at the user interface level

< Rational Functional Tester - web GUI+

< http://www-
0l.ibm.com/software/awdtools/tester/functional/ind
ex.html

< Selenium IDE - web
< http://selenium.openga.org/

< Marathon — GUI

< http://marathonman.sourceforge.net/

< Rational Robot - GUl(for legacy applications),
Rational Quallty Manager JWebUnit

<embed/1t> IM' V ... <18>

Acceptance Testing

< Customer acceptance testing verifies that the
application meets customer’s requirements and
expectations.

< Absence of acceptance testing (or its
underestimation and lack of design) almost always
leads to future disputes and problems.

< Customers unfortunately have a tendency to
underestimate it. The non-compliance of the
implementation with the customer’s requirements
so often comes at the moment of production
deployment :-(.

JERS, AKTIS Iz,
o 7 5)
- 'Q ’V‘P‘ § %-
= i /s
e! ! ! e 1 ceed, Zreeer R R X TP PR) <1 >
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® ras Mas®

Performance and Scalability Testing

< Performance testing verifies system throughput and
response time at high loads.

< Part of the specification should be the definition of
the throughput and response times of the
prescribed load.

< Rational Performance Tester (+ extensions)

< http://www-
O0l.ibm.com/software/awdtools/tester/perfo
rmance/index.htm

< Rational Service Tester for SOA Quality (functional
testing, performance testing +)

< JMeter - http://jakarta.apache.org/jmeter/

i/

‘\‘\\T E RS/;, - ARTIS W”o%
- 'Q ”. § kS
= i /5
<em e 1 > 000-751 2»»--7.‘3 S 00e0ecce00 000000000000 000 <20>
7) 2, >
ﬁf‘i’ ?-\Sé G@“’& "“5
ZANA® Trag et

Usability Testing

< In the USA a common thing, in Europe still not so
obvious and Asia is likely to overtake Europe in this.

< The definition of the prototype of the target user.
< Select a group of test users (test sample).

< Test user is given a list of tasks that are trying to
solve without the help of someone else.

< His/her behavior is monitored and evaluated.

< See Stefkovié, M.: Usability of Web applications.
https://is.muni.cz/auth/th/166042/fi b/ (Bc. Thesis)

i/

‘\\\T ERSy » B ARTIS WmU%
- 'Q d" § %-
= i /s
empe 1 v Z..5 U <21>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® g pas®

https://is.muni.cz/auth/th/166042/fi_b/
https://is.muni.cz/auth/th/166042/fi_b/
https://is.muni.cz/auth/th/166042/fi_b/

Security Testing

< Security testing checks resistance against various
security attacks.

< Tools:

< Rational AppScan - web app security testing
< http://www-
0l.ibm.com/software/awdtools/appscan/

‘\\\T ERSy 7:1 B ARTIS WmU%
- 'Q ‘P‘ 5}& ‘?—
= i /s
empe 1 v Z..5 N <292>
7 & %, F
ﬁiﬁ' Q-65 Ty, e
JANA® g pas®

<embed/it> -

=
b

wn
"4«

\VERS/}

ZANA “q'

5Nsns~

.

.

.

eﬂ‘ 15 U\l}p

&"cﬂ

&
g
i
P

\4

&"TAS M,xsl*?'

>
g a;:)\"Q

...<: 23>

