
Design of Digital Systems II
Combinational Logic Design Practices (2)

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University

Brno, Czech Republic

amiri@mail.muni.cz

prenosil@fi.muni.cz

Fall, 2014

Decoders

A decoder is a multiple-input, multiple-output logic circuit that
converts coded inputs into coded outputs, where input and output
codes are different

Input code generally has fewer bits than output code
There is a one-to-one mapping from input code words into output code
words

In a one-to-one mapping, each input code word produces a different
output code word

Section 5.4 Decoders 313

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

required input and output patterns, called test vectors, can be specified by the
designer as we showed in Section 4.6.7,or can be generated automatically by a
special test-vector-generation program. Regardless of how the test vectors are
generated, most PLD programmers have the ability to apply test-vector inputs to
a PLD and to check its outputs against the expected results.

Most PLDs have a security fuse which, when programmed, disables the
ability to read fuse patterns from the device. Manufacturers can program this
fuse to prevent others from reading out the PLD fuse patterns in order to copy the
product design. Even if the security fuse is programmed, test vectors still work,
so the PLD can still be checked.

5.4 Decoders
A decoder is a multiple-input, multiple-output logic circuit that converts coded
inputs into coded outputs, where the input and output codes are different. The
input code generally has fewer bits than the output code, and there is a one-to-
one mapping from input code words into output code words. In a one-to-one
mapping, each input code word produces a different output code word.

The general structure of a decoder circuit is shown in Figure 5-31. The
enable inputs, if present, must be asserted for the decoder to perform its normal
mapping function. Otherwise, the decoder maps all input code words into a
single, “disabled,” output code word.

The most commonly used input code is an n-bit binary code, where an n-bit
word represents one of 2n different coded values, normally the integers from 0
through 2n−1. Sometimes an n-bit binary code is truncated to represent fewer
than 2n values. For example, in the BCD code, the 4-bit combinations 0000
through 1001 represent the decimal digits 0–9, and combinations 1010 through
1111 are not used.

The most commonly used output code is a 1-out-of-m code, which contains
m bits, where one bit is asserted at any time. Thus, in a 1-out-of-4 code with
active-high outputs, the code words are 0001, 0010, 0100, and 1000. With
active-low outputs, the code words are 1110, 1101, 1011, and 0111.

security fuse

decoder

one-to-one mapping

Decoder

input
code word

enable
inputs

output
code word

map

Figure 5-31
Decoder circuit structure.

Figure 1: Decoder circuit structure.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 2 / 69

Decoders

Enable inputs must be asserted for decoder to perform its normal
mapping function

Otherwise, it maps all input code words into a single, ”disabled,” output
code word

Most commonly used input code is an n-bit binary code

An n-bit word represents one of 2n different coded values

Most commonly used output code is a 1-out-of-m code

m bits where one bit is asserted at any time

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 3 / 69

Decoders: Binary Decoders

Binary decoder is an n-to-2n decoder

It has an n-bit binary input code and a 1-out-of-2n output code

314 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.4.1 Binary Decoders
The most common decoder circuit is an n-to-2n decoder or binary decoder. Such
a decoder has an n-bit binary input code and a 1-out-of-2n output code. A binary
decoder is used when you need to activate exactly one of 2n outputs based on an
n-bit input value.

For example, Figure 5-32(a) shows the inputs and outputs and Table 5-4 is
the truth table of a 2-to-4 decoder. The input code word 1,I0 represents an integer
in the range 0–3. The output code word Y3,Y2,Y1,Y0 has Yi equal to 1 if and only
if the input code word is the binary representation of i and the enable input EN is
1. If EN is 0, then all of the outputs are 0. A gate-level circuit for the 2-to-4
decoder is shown in Figure 5-32(b). Each AND gate decodes one combination of
the input code word I1,I0.

The binary decoder’s truth table introduces a “don’t-care” notation for
input combinations. If one or more input values do not affect the output values
for some combination of the remaining inputs, they are marked with an “x” for
that input combination. This convention can greatly reduce the number of rows
in the truth table, as well as make the functions of the inputs more clear.

The input code of an n-bit binary decoder need not represent the integers
from 0 through 2n−1. For example, Table 5-5 shows the 3-bit Gray-code output

Ta b l e 5 - 4
Truth table for a 2-to-4
binary decoder.

Inputs Outputs

EN I1 I0 Y3 Y2 Y1 Y0

 0 x x 0 0 0 0

 1 0 0 0 0 0 1
 1 0 1 0 0 1 0
 1 1 0 0 1 0 0
 1 1 1 1 0 0 0

binary decoder

2-to-4
decoder

I0

I1

EN

Y0

Y1

Y2

Y3

(a) (b)

I0′ I0 I1′ I1 EN
I0

I1

EN

Y0

Y1

Y2

Y3

Figure 5-32
A 2-to-4 decoder:
(a) inputs and outputs;
(b) logic diagram.

enable input

decode

Figure 2: A 2-to-4 decoder: (a) inputs and outputs; (b) logic diagram.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 4 / 69

Decoders: Binary Decoders

Table 1: Truth table for a 2-to-4 binary decoder.

Inputs Outputs

EN I1 I0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Input code of an n-bit binary decoder need not represent integers from
0 through 2n − 1

E.g., it can be in Gray code (appropriately assign inputs to outputs)
It is not necessary to use all of outputs of a decoder, or even to decode
all possible input combinations

E.g., a BCD decoder decodes only first ten binary input combinations
0000-1001 to produce outputs Y0-Y9

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 5 / 69

Decoders: The 74x139 Dual 2-to-4 Decoder

74x139 is a single MSI part containing two independent and identical
2-to-4 decoders

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 6 / 69

Decoders: The 74x139 Dual 2-to-4 Decoder

Section 5.4 Decoders 317

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.4.3 The 74x139 Dual 2-to-4 Decoder
Two independent and identical 2-to-4 decoders are contained in a single MSI
part, the 74x139. The gate-level circuit diagram for this IC is shown in
Figure 5-35(a). Notice that the outputs and the enable input of the ’139 are
active-low. Most MSI decoders were originally designed with active-low
outputs, since TTL inverting gates are generally faster than noninverting ones.
Also notice that the ’139 has extra inverters on its select inputs. Without these
inverters, each select input would present three AC or DC loads instead of one,
consuming much more of the fanout budget of the device that drives it.

IEEE STANDARD
LOGIC SYMBOLS

Throughout this book, we use “traditional” symbols for larger-scale logic elements.
The IEEE standard uses somewhat different symbols for larger-scale logic elements.
IEEE standard symbols, as well as the pros and cons of IEEE versus traditional
symbols, are discussed in Appendix A.

74x139

74x139

1A

1G

1B

1Y0

1Y1

1Y2

1Y3

(b)

1G_L

1A

1B

(1)

(4)

1 4

5

6

7

2

3

2A

2G

2B

2Y0

2Y1

2Y2

2Y3

15 12

11

10

9

14

13

1/2 74x139

A

G

B

Y0

Y1

Y2

Y3

(c)

(5)

(6)

(7)

(2)

(3)

1Y0_L

1Y1_L

1Y2_L

1Y3_L

2G_L

2A

2B

(15)

(12)

(11)

(10)

(9)

(14)

(13)

2Y0_L

2Y1_L

2Y2_L

2Y3_L

(a)

Figure 5-35 The 74x139 dual 2-to-4 decoder: (a) logic diagram, including pin
numbers for a standard 16-pin dual in-line package;
(b) traditional logic symbol; (c) logic symbol for one decoder.

Figure 3: The 74x139 dual 2-to-4 decoder: (a) logic diagram, including pin
numbers for a standard 16-pin dual in-line package; (b) traditional logic symbol;
(c) logic symbol for one decoder.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 7 / 69

Decoders: The 74x139 Dual 2-to-4 Decoder

Outputs and enable input of ’139 are active-low
Inverting gates are generally faster than noninverting ones

’139 has extra inverters on its select inputs
Without these inverters, each select input would present three AC or DC
loads instead of one, consuming much more of fanout budget of device
that drives it

Table 2: Truth table for one-half of a 74x139 dual 2-to-4 decoder.

Inputs Outputs

G L B A Y3 L Y2 L Y1 L Y0 L

1 x x 1 1 1 1
0 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 1

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 8 / 69

Decoders: The 74x138 3-to-8 Decoder Section 5.4 Decoders 321

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

(b)(15)

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

(14)

(13)

(12)

Y0_L

Y1_L

Y2_L

Y3_L

C

(11)

(10)

(9)

(7)(3)

B
(2)

Y4_L

Y5_L

Y6_L

Y7_L

A
(1)

G2B_L
(5)

G2A_L
(4)

G1
(6)

(a)

Figure 5-37
The 74x138 3-to-8
decoder: (a) logic
diagram, including pin
numbers for a
standard 16-pin dual
in-line package;
(b) traditional logic
symbol.

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

N0

N1

N2

N3

EN_L

+5V

U1

U2

R Figure 5-38
Design of a 4-to-16
decoder using
74x138s.

Section 5.4 Decoders 321

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

(b)(15)

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

(14)

(13)

(12)

Y0_L

Y1_L

Y2_L

Y3_L

C

(11)

(10)

(9)

(7)(3)

B
(2)

Y4_L

Y5_L

Y6_L

Y7_L

A
(1)

G2B_L
(5)

G2A_L
(4)

G1
(6)

(a)

Figure 5-37
The 74x138 3-to-8
decoder: (a) logic
diagram, including pin
numbers for a
standard 16-pin dual
in-line package;
(b) traditional logic
symbol.

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

N0

N1

N2

N3

EN_L

+5V

U1

U2

R Figure 5-38
Design of a 4-to-16
decoder using
74x138s.

Figure 4: The 74x138 3-to-8 decoder: (a) logic diagram, including pin numbers
for a standard 16-pin dual in-line package; (b) traditional logic symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 9 / 69

Decoders: The 74x138 3-to-8 Decoder

Table 3: Truth table for a 74x138 3-to-8 decoder.

Inputs Outputs

G1 G2A L G2B L C B A Y7 L Y6 L Y5 L Y4 L Y3 L Y2 L Y1 L Y0 L

0 x x x x x 1 1 1 1 1 1 1 1
x 1 x x x x 1 1 1 1 1 1 1 1
x x 1 x x x 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 0 0 1 1 1 1 1 1 1 0 1
1 0 0 0 1 0 1 1 1 1 1 0 1 1
1 0 0 0 1 1 1 1 1 1 0 1 1 1
1 0 0 1 0 0 1 1 1 0 1 1 1 1
1 0 0 1 0 1 1 1 0 1 1 1 1 1
1 0 0 1 1 0 1 0 1 1 1 1 1 1
1 0 0 1 1 1 0 1 1 1 1 1 1 1

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 10 / 69

Decoders: Cascading Binary Decoders

Multiple binary decoders can be used to decode larger code words

Section 5.4 Decoders 321

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

(b)(15)

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

(14)

(13)

(12)

Y0_L

Y1_L

Y2_L

Y3_L

C

(11)

(10)

(9)

(7)(3)

B
(2)

Y4_L

Y5_L

Y6_L

Y7_L

A
(1)

G2B_L
(5)

G2A_L
(4)

G1
(6)

(a)

Figure 5-37
The 74x138 3-to-8
decoder: (a) logic
diagram, including pin
numbers for a
standard 16-pin dual
in-line package;
(b) traditional logic
symbol.

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

N0

N1

N2

N3

EN_L

+5V

U1

U2

R Figure 5-38
Design of a 4-to-16
decoder using
74x138s.

Figure 5: Design of a 4-to-16 decoder using 74x138s.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 11 / 69

Decoders: Cascading Binary Decoders

To handle larger code words, binary decoders can be cascaded
hierarchically

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 12 / 69

Decoders: Cascading Binary Decoders
322 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

N0

N1

N2

N3

EN3_L

N4

EN2_L

EN1

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC18_L

DEC19_L

DEC20_L

DEC21_L

DEC22_L

DEC23_L

DEC16_L

DEC17_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC26_L

DEC27_L

DEC28_L

DEC29_L

DEC30_L

DEC31_L

DEC24_L

DEC25_L

1/2 74x139

1A

1G

1B

1Y0

1Y1

1Y2

1Y3

EN0X7_L

EN8X15_L

EN16X23_L

EN24X31_L

6
15

14

13

7

4

5

1

12

11

10

9
2

3

6
15

14

13

7

4

5

1

12

11

10

9
2

3

6
15

14

13

7

4

5

1

12

11

10

9
2

3

6
15

14

13

7

4

5

1

12

11

10

9
2

3

1 4

5

6

7

2

3

U2

U3

U4

U5

U1

Figure 5-39 Design of a 5-to-32 decoder using 74x138s and a 74x139.

Figure 6: Design of a 5-to-32 decoder using 74x138s and a 74x139.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 13 / 69

Decoders in Verilog

Table 4: Structural-style Verilog module for the decoder in Fig. 2.

314 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.4.1 Binary Decoders
The most common decoder circuit is an n-to-2n decoder or binary decoder. Such
a decoder has an n-bit binary input code and a 1-out-of-2n output code. A binary
decoder is used when you need to activate exactly one of 2n outputs based on an
n-bit input value.

For example, Figure 5-32(a) shows the inputs and outputs and Table 5-4 is
the truth table of a 2-to-4 decoder. The input code word 1,I0 represents an integer
in the range 0–3. The output code word Y3,Y2,Y1,Y0 has Yi equal to 1 if and only
if the input code word is the binary representation of i and the enable input EN is
1. If EN is 0, then all of the outputs are 0. A gate-level circuit for the 2-to-4
decoder is shown in Figure 5-32(b). Each AND gate decodes one combination of
the input code word I1,I0.

The binary decoder’s truth table introduces a “don’t-care” notation for
input combinations. If one or more input values do not affect the output values
for some combination of the remaining inputs, they are marked with an “x” for
that input combination. This convention can greatly reduce the number of rows
in the truth table, as well as make the functions of the inputs more clear.

The input code of an n-bit binary decoder need not represent the integers
from 0 through 2n−1. For example, Table 5-5 shows the 3-bit Gray-code output

Ta b l e 5 - 4
Truth table for a 2-to-4
binary decoder.

Inputs Outputs

EN I1 I0 Y3 Y2 Y1 Y0

 0 x x 0 0 0 0

 1 0 0 0 0 0 1
 1 0 1 0 0 1 0
 1 1 0 0 1 0 0
 1 1 1 1 0 0 0

binary decoder

2-to-4
decoder

I0

I1

EN

Y0

Y1

Y2

Y3

(a) (b)

I0′ I0 I1′ I1 EN
I0

I1

EN

Y0

Y1

Y2

Y3

Figure 5-32
A 2-to-4 decoder:
(a) inputs and outputs;
(b) logic diagram.

enable input

decode

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 14 / 69

Decoders in Verilog

Table 5: Functional-style Verilog module for a 74x138-like 3-to-8 binary
decoder.

Section 5.4 Decoders 321

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x138

G2A
G1

G2B

Y0
Y1
Y2
Y3

 (15)

6
15

14

13

7

4

5

B
A

C

Y4
Y5
Y6
Y7

1

12

11

10

9
2

3

(14)

(13)

(12)

Y0_L

Y1_L

Y2_L

Y3_L

C

(11)

(10)

(9)

(7)(3)

B
(2)

Y4_L

Y5_L

Y6_L

Y7_L

A
(1)

G2B_L
(5)

G2A_L
(4)

G1
(6)

(a)

Figure 5-37
The 74x138 3-to-8
decoder: (a) logic
diagram, including pin
numbers for a
standard 16-pin dual
in-line package;
(b) traditional logic
symbol.

74x138

G2A
G1

G2B

Y0
Y1
Y2
Y3

6
15

14

13

7

4

5

B
A

C

Y4
Y5
Y6
Y7

1

12

11

10

9
2

3

74x138

G2A
G1

G2B

Y0
Y1
Y2
Y3

6
15

14

13

7

4

5

B
A

C

Y4
Y5
Y6
Y7

1

12

11

10

9
2

3

DEC0_L
DEC1_L
DEC2_L
DEC3_L
DEC4_L
DEC5_L

DEC10_L
DEC11_L
DEC12_L
DEC13_L
DEC14_L
DEC15_L

DEC6_L
DEC7_L

DEC8_L
DEC9_L

N0
N1
N2
N3

EN_L

+5V

U1

U2

R Figure 5-38
Design of a 4-to-16
decoder using
74x138s.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 15 / 69

Decoders in Verilog

In Tab. 5

Constants and inversions that handle the fact that two inputs and all
outputs are active low are scattered throughout the code
While its true that most Verilog programs are written almost entirely
with active-high signals, if we are defining a device with active-low
external pins, we should handle them in a more systematic and easily
maintainable way

Tab. 6

Decoder function is defined in terms of only active-high signals
The design can be easily modified in just a few well-defined places if
changes are required in external active levels

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 16 / 69

Decoders in Verilog

Table 6: Verilog module with a maintainable approach to active-level handling.

Section 5.4 Decoders 321

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x138

G2A
G1

G2B

Y0
Y1
Y2
Y3

 (15)

6
15

14

13

7

4

5

B
A

C

Y4
Y5
Y6
Y7

1

12

11

10

9
2

3

(14)

(13)

(12)

Y0_L

Y1_L

Y2_L

Y3_L

C

(11)

(10)

(9)

(7)(3)

B
(2)

Y4_L

Y5_L

Y6_L

Y7_L

A
(1)

G2B_L
(5)

G2A_L
(4)

G1
(6)

(a)

Figure 5-37
The 74x138 3-to-8
decoder: (a) logic
diagram, including pin
numbers for a
standard 16-pin dual
in-line package;
(b) traditional logic
symbol.

74x138

G2A
G1

G2B

Y0
Y1
Y2
Y3

6
15

14

13

7

4

5

B
A

C

Y4
Y5
Y6
Y7

1

12

11

10

9
2

3

74x138

G2A
G1

G2B

Y0
Y1
Y2
Y3

6
15

14

13

7

4

5

B
A

C

Y4
Y5
Y6
Y7

1

12

11

10

9
2

3

DEC0_L
DEC1_L
DEC2_L
DEC3_L
DEC4_L
DEC5_L

DEC10_L
DEC11_L
DEC12_L
DEC13_L
DEC14_L
DEC15_L

DEC6_L
DEC7_L

DEC8_L
DEC9_L

N0
N1
N2
N3

EN_L

+5V

U1

U2

R Figure 5-38
Design of a 4-to-16
decoder using
74x138s.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 17 / 69

Decoders in Verilog

Table 7: Hierarchical definition of
74x138-like decoder with active-level
handling.

Table 8: Verilog functional
definition of an active-high 3-to-8
decoder.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 18 / 69

Decoders in Verilog

Figure 7: Verilog module 74x138c: (a) top level; (b) internal structure using
module Vr3to8deca.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 19 / 69

Decoders in Verilog

Table 9: Behavioral Verilog definition for a 3-to-8 decoder.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 20 / 69

Decoders: Seven-Segment Decoders

A seven-segment decoder has 4-bit BCD as its input code and
”seven-segment code” as its output code

332 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

As a final example, a more truly behavioral, process-based architecture for
the 3-to-8 decoder is shown in Table 5-19. (Recall that the CONV_INTEGER func-
tion was defined in \secref{VHDLconv}.) Of the examples we’ve given, this is
the only one that describes the decoder function without essentially embedding
a truth table in the VHDL program. In that respect, it is more flexible because it
can be easily adapted to make a binary decoder of any size. In another respect, it
is less flexible in that it does not have a truth table that can be easily modified to
make custom decoders like the one we specified in Table 5-10 on page 325.

*5.4.8 Seven-Segment Decoders
Look at your wrist and you’ll probably see a seven-segment display. This type
of display, which normally uses light-emitting diodes (LEDs) or liquid-crystal
display (LCD) elements, is used in watches, calculators, and instruments to
display decimal data. A digit is displayed by illuminating a subset of the seven
line segments shown in Figure 5-43(a).

A seven-segment decoder has 4-bit BCD as its input code and the “seven-
segment code,” which is graphically depicted in Figure 5-43(b), as its output
code. Figure 5-44 and Table 5-20 are the logic diagram truth table and for a
74x49 seven-segment decoder. Except for the strange (clever?) connection of the
“blanking input” BI_L, each output of the 74x49 is a minimal product-of-sums

Ta b l e 5 - 1 9
Truly behavioral
architecture definition
for a 3-to-8 decoder.

architecture V3to8dec_c of V3to8dec is
begin
process (G1, G2, G3, A)
 variable i: INTEGER range 0 to 7;
 begin
 Y <= "00000000";
 if (G1 and G2 and G3) = '1' then
 for i in 0 to 7 loop
 if i=CONV_INTEGER(A) then Y(i) <= '1'; end if;
 end loop;
 end if;
 end process;
end V3to8dec_c;

seven-segment display

a

b

ce

f

d

g

(a) (b)

Figure 5-43 Seven-segment display: (a) segment identification; (b) decimal digits.

seven-segment decoder

74x49

Figure 8: Seven-segment display: (a) segment identification; (b) decimal digits.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 21 / 69

Decoders: Seven-Segment Decoders
Section 5.4 Decoders 333

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

(3)

(4)

(11)
a

(10)
b

(9)
c

(8)
d

(13)
f

BI_L

D

(2)
C

(1)
B

(5)
A

(6)
e

(12)
g

74x49

BI

A

a

b

3 11

10

c
9

d
8

e
6

f
13

g
12

5

B

C

1

2

D
4

(b)

(a)

Figure 5-44 The 74x49 seven-segment decoder: (a) logic diagram, including
pin numbers; (b) traditional logic symbol.Figure 9: The 74x49 seven-segment decoder: (a) logic diagram, including pin

numbers; (b) traditional logic symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 22 / 69

Decoders: Seven-Segment Decoders

Table 10: Truth table for a 74x49 seven-segment decoder.

Inputs Outputs

BI L D C B A a b c d e f g

0 x x x x 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
1 0 0 1 0 1 1 0 1 1 0 1
1 0 0 1 1 1 1 1 1 0 0 1
1 0 1 0 0 0 1 1 0 0 1 1
1 0 1 0 1 1 0 1 1 0 1 1
1 0 1 1 0 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 0 0 1 1
1 1 0 1 0 0 0 0 1 1 0 1
1 1 0 1 1 0 0 1 1 0 0 1
1 1 1 0 0 0 1 0 0 0 1 1
1 1 1 0 1 1 0 0 1 0 1 1
1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 23 / 69

Decoders: Seven-Segment Decoders

Each output of 74x49 is a minimal POS realization for corresponding
segment, assuming don’t-cares for non-decimal input combinations

INVERT-OR-AND structure used for each output is equivalent to an
AND-OR-INVERT gate, which is a fast and compact structure to build
in CMOS or TTL

Modern seven-segment display elements have decoders built into them

A 4-bit BCD word can be applied directly to device

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 24 / 69

Decoders: Seven-Segment Decoders

Table 11: Verilog program for a seven-segment decoder.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 25 / 69

Encoders

If a device’s output code has fewer bits than input code, it is called an
encoder
Simplest encoder to build is a 2n-to-n or binary encoder

Its input code is 1-out-of-2n code and its output code is n-bit binary

336 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.5 Encoders
A decoder’s output code normally has more bits than its input code. If the
device’s output code has fewer bits than the input code, the device is usually
called an encoder. For example, consider a device with eight input bits repre-
senting an unsigned binary number, and two output bits indicating whether the
number is prime or divisible by 7. We might call such a device a lucky/prime
encoder.

Probably the simplest encoder to build is a 2n-to-n or binary encoder. As
shown in Figure 5-45(a), it has just the opposite function as a binary decoder—
its input code is the 1-out-of-2n code and its output code is n-bit binary. The
equations for an 8-to-3 encoder with inputs I0–I7 and outputs Y0–Y2 are given
below:

The corresponding logic circuit is shown in (b). In general, a 2n-to-n encoder can
be built from n 2n−1-input OR gates. Bit i of the input code is connected to OR
gate j if bit j in the binary representation of i is 1.

5.5.1 Priority Encoders
The 1-out-of-2n coded outputs of an n-bit binary decoder are generally used to
control a set of 2n devices, where at most one device is supposed to be active at
any time. Conversely, consider a system with 2n inputs, each of which indicates
a request for service, as in Figure 5-46. This structure is often found in micro-
processor input/output subsystems, where the inputs might be interrupt requests.

In this situation, it may seem natural to use a binary encoder of the type
shown in Figure 5-45 to observe the inputs and indicate which one is requesting
service at any time. However, this encoder works properly only if the inputs are
guaranteed to be asserted at most one at a time. If multiple requests can be made

Y0 = I1 + I3 + I5 + I7

Y1 = I2 + I3 + I6 + I7

Y2 = I4 + I5 + I6 + I7

encoder

2n-to-n encoder
binary encoder

Binary
encoder

Y0

Y1I1

I0

I2

I2n–1

Yn–1

2n inputs
n outputs

(a) (b)

I0

I1

I2

I3

I4

I5

I6

I7

Y0

Y1

Y2

Figure 10: Binary encoder: (a) general structure; (b) 8-to-3 encoder.

Y 0 = I 1 + I 3 + I 5 + I 7
Y 1 = I 2 + I 3 + I 6 + I 7
Y 2 = I 4 + I 5 + I 6 + I 7

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 26 / 69

Encoders: Priority Encoders

Consider a system with 2n inputs, each of which indicates a request for
service

This structure is often found in microprocessor input/output subsystems
where inputs might be interrupt requests
Binary encoder works properly only if inputs are guaranteed to be
asserted at most one at a time
If multiple requests can be made simultaneously, the encoder gives
undesirable results

Section 5.5 Encoders 337

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

simultaneously, the encoder gives undesirable results. For example, suppose that
inputs I2 and I4 of the 8-to-3 encoder are both 1; then the output is 110, the
binary encoding of 6.

Either 2 or 4, not 6, would be a useful output in the preceding example, but
how can the encoding device decide which? The solution is to assign priority to
the input lines, so that when multiple requests are asserted, the encoding device
produces the number of the highest-priority requestor. Such a device is called a
priority encoder.

The logic symbol for an 8-input priority encoder is shown in Figure 5-47.
Input I7 has the highest priority. Outputs A2–A0 contain the number of the
highest-priority asserted input, if any. The IDLE output is asserted if no inputs
are asserted.

In order to write logic equations for the priority encoder’s outputs, we first
define eight intermediate variables H0–H7, such that Hi is 1 if and only if Ii is the
highest priority 1 input:

Using these signals, the equations for the A2–A0 outputs are similar to the ones
for a simple binary encoder:

The IDLE output is 1 if no inputs are 1:

H7 = I7

H6 = I6 ⋅ I7′
H5 = I5 ⋅ I6′ ⋅ I7′

…
H0 = I0 ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

A2 = H4 + H5 + H6 + H7

A1 = H2 + H3 + H6 + H7

A0 = H1 + H3 + H5 + H7

IDLE = (I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7)′
= I0′ ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

Request
encoder

Requests
for service

Requestor's
number

REQ1

REQ2
REQ3

REQN

Figure 5-46
A system with 2n
requestors, and a “request
encoder” that indicates
which request signal is
asserted at any time.

priority

priority encoder

Priority
encoder

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

IDLE

Figure 5-47
Logic symbol for
a generic 8-input
priority encoder.

Figure 11: A system with 2n requestors, and a ”request encoder” that indicates
which request signal is asserted at any time.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 27 / 69

Encoders: Priority Encoders

We assign priority to input lines, so that when multiple requests are
asserted, encoder produces the number of the highest-priority
requestor

Such a device is called priority encoder

Section 5.5 Encoders 337

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

simultaneously, the encoder gives undesirable results. For example, suppose that
inputs I2 and I4 of the 8-to-3 encoder are both 1; then the output is 110, the
binary encoding of 6.

Either 2 or 4, not 6, would be a useful output in the preceding example, but
how can the encoding device decide which? The solution is to assign priority to
the input lines, so that when multiple requests are asserted, the encoding device
produces the number of the highest-priority requestor. Such a device is called a
priority encoder.

The logic symbol for an 8-input priority encoder is shown in Figure 5-47.
Input I7 has the highest priority. Outputs A2–A0 contain the number of the
highest-priority asserted input, if any. The IDLE output is asserted if no inputs
are asserted.

In order to write logic equations for the priority encoder’s outputs, we first
define eight intermediate variables H0–H7, such that Hi is 1 if and only if Ii is the
highest priority 1 input:

Using these signals, the equations for the A2–A0 outputs are similar to the ones
for a simple binary encoder:

The IDLE output is 1 if no inputs are 1:

H7 = I7

H6 = I6 ⋅ I7′
H5 = I5 ⋅ I6′ ⋅ I7′

…
H0 = I0 ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

A2 = H4 + H5 + H6 + H7

A1 = H2 + H3 + H6 + H7

A0 = H1 + H3 + H5 + H7

IDLE = (I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7)′
= I0′ ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

Request
encoder

Requests
for service

Requestor's
number

REQ1

REQ2
REQ3

REQN

Figure 5-46
A system with 2n
requestors, and a “request
encoder” that indicates
which request signal is
asserted at any time.

priority

priority encoder

Priority
encoder

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

IDLE

Figure 5-47
Logic symbol for
a generic 8-input
priority encoder.

Figure 12: Logic symbol for a generic 8-input priority encoder.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 28 / 69

Encoders: Priority Encoders

Logic equations for priority encoder’s outputs (Fig. 12)
Input I 7 has the highest priority
Outputs A2–A0 contain number of the highest-priority asserted input
IDLE is asserted if no inputs are asserted
First we define eight intermediate variables H0–H7
Using H0–H7, equations for A2–A0 are similar to ones for a binary
encoder

H7 = I 7

H6 = I 6 · I 7′

H5 = I 5 · I 6′ · I 7′

...

H0 = I 0 · I 1′ · I 2′ · I 3′ · I 4′ · I 5′ · I 6′ · I 7′

A2 = H4 + H5 + H6 + H7

A1 = H2 + H3 + H6 + H7

A0 = H1 + H3 + H5 + H7

IDLE = I 0′ · I 1′ · I 2′ · I 3′ · I 4′ · I 5′ · I 6′ · I 7′

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 29 / 69

Encoders: The 74x148 Priority Encoder

74x148 is an MSI 8-input priority encoder

338 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.5.2 The 74x148 Priority Encoder
The 74x148 is a commercially available, MSI 8-input priority encoder. Its logic
symbol is shown in Figure 5-48 and its schematic is shown in Figure 5-49. The
main difference between this IC and the “generic” priority encoder of
Figure 5-47 is that its inputs and outputs are active low. Also, it has an enable
input, EI_L, that must be asserted for any of its outputs to be asserted. The
complete truth table is given in Table 5-22.

Instead of an IDLE output, the ’148 has a GS_L output that is asserted when
the device is enabled and one or more of the request inputs is asserted. The
manufacturer calls this “Group Select,” but it’s easier to remember as “Got
Something.” The EO_L signal is an enable output designed to be connected to
the EI_L input of another ’148 that handles lower-priority requests. /EO is
asserted if EI_L is asserted but no request input is asserted; thus, a lower-priority
’148 may be enabled.

Figure 5-50 shows how four 74x148s can be connected in this way to
accept 32 request inputs and produce a 5-bit output, RA4–RA0, indicating the
highest-priority requestor. Since the A2–A0 outputs of at most one ’148 will be
enabled at any time, the outputs of the individual ’148s can be ORed to produce
RA2–RA0. Likewise, the individual GS_L outputs can be combined in a 4-to-2
encoder to produce RA4 and RA3. The RGS output is asserted if any GS output
is asserted.

Ta b l e 5 - 2 2 Truth table for a 74x148 8-input priority encoder.

Inputs Outputs

/EI /I0 /I1 /I2 /I3 /I4 /I5 /I6 /I7 /A2 /A1 /A0 /GS /EO

1 x x x x x x x x 1 1 1 1 1

0 x x x x x x x 0 0 0 0 0 1

0 x x x x x x 0 1 0 0 1 0 1

0 x x x x x 0 1 1 0 1 0 0 1

0 x x x x 0 1 1 1 0 1 1 0 1

0 x x x 0 1 1 1 1 1 0 0 0 1

0 x x 0 1 1 1 1 1 1 0 1 0 1

0 x 0 1 1 1 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

Figure 5-48
Logic symbol for
the 74x148 8-input
priority encoder.

Figure 13: Logic symbol for the 74x148 8-input priority encoder.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 30 / 69

Encoders: The 74x148 Priority Encoder
Section 5.5 Encoders 339

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

(10)

(11)

(12)

(13)

(1)

(2)

(3)

(4)

(5)
EI_L

I7_L

I6_L

I5_L

I4_L

I3_L

I2_L

I1_L

I0_L

EO_L

GS_L

A0_L

A1_L

A2_L
(6)

(7)

(9)

(14)

(15)

Figure 5-49 Logic diagram for the 74x148 8-input priority encoder, including
pin numbers for a standard 16-pin dual in-line package.Figure 14: Logic diagram for the 74x148 8-input priority encoder, including pin

numbers for a standard 16-pin dual in-line package.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 31 / 69

Encoders: The 74x148 Priority Encoder

Table 12: Truth table for a 74x148 8-input priority encoder.

Inputs Outputs

EI L I0 L I1 L I2 L I3 L I4 L I5 L I6 L I7 L A2 L A1 L A0 L GS L EO L

1 x x x x x x x x 1 1 1 1 1
0 x x x x x x x 0 0 0 0 0 1
0 x x x x x x 0 1 0 0 1 0 1
0 x x x x x 0 1 1 0 1 0 0 1
0 x x x x 0 1 1 1 0 1 1 0 1
0 x x x 0 1 1 1 1 1 0 0 0 1
0 x x 0 1 1 1 1 1 1 0 1 0 1
0 x 0 1 1 1 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 32 / 69

Encoders: The 74x148 Priority Encoder

Instead of an IDLE output, ’148 has a GS L (Group Select) output

It is asserted when device is enabled and one or more of request inputs
are asserted

EO L signal is an enable output used for cascading

It is designed to be connected to EI L input of another ’148 that handles
lower-priority requests
EO L is asserted if EI L is asserted but no request input is asserted;
thus, a low-priority ’148 may be enabled

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 33 / 69

Encoders: The 74x148 Priority Encoder
340 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

74x148

REQ31_L

REQ30_L

REQ29_L

REQ28_L

REQ27_L

REQ26_L

REQ25_L

REQ24_L

REQ23_L

REQ22_L

REQ21_L

REQ20_L

REQ19_L

REQ18_L

REQ17_L

REQ16_L

REQ15_L

REQ14_L

REQ13_L

REQ12_L

REQ11_L

REQ10_L

REQ9_L

REQ8_L

REQ0_L

REQ1_L

REQ2_L

REQ3_L

REQ4_L

REQ5_L

REQ6_L

REQ7_L I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

RGS

RA0

RA1

RA2

RA3

RA4

U1

U2

U3

U4

G3A2_L

G3A1_L

G3A0_L

G3GS_L

G3EO_L

G2A2_L

G2A1_L

G2A0_L

G2GS_L

G2EO_L

G1A2_L

G1A1_L

G1A0_L

G1GS_L

G1EO_L

G0A2_L

G0A1_L

G0A0_L

G0GS_L

74x00
1

2
3

U5

74x00
4

5
6

U5

74x20

U7

9

10

12
8

13

74x20

U7

1

2

4
6

5

74x20

U6

9

10

12
8

13

74x20

U6

1

2

4
6

5

Figure 5-50 Four 74x148s cascaded to handle 32 requests.

Figure 15: Four 74x148s cascaded to handle 32 requests.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 34 / 69

Encoders: The 74x148 Priority Encoder

In Fig. 15

There are 32 request inputs and a 5-bit output, RA4–RA0, indicating
the highest-priority requestor
Since A2–A0 outputs of at most one ’148 will be enabled at any time,
outputs of individual ’148s can be ORed to produce RA2–RA0
Individual GS L outputs can be combined in a 4-to-2 encoder to produce
RA4 and RA3
RGS output is asserted if any GS output is asserted

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 35 / 69

Encoders in Verilog

Table 13: Behavioral Verilog module for a 74x148-like 8-input priority encoder.

338 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.5.2 The 74x148 Priority Encoder
The 74x148 is a commercially available, MSI 8-input priority encoder. Its logic
symbol is shown in Figure 5-48 and its schematic is shown in Figure 5-49. The
main difference between this IC and the “generic” priority encoder of
Figure 5-47 is that its inputs and outputs are active low. Also, it has an enable
input, EI_L, that must be asserted for any of its outputs to be asserted. The
complete truth table is given in Table 5-22.

Instead of an IDLE output, the ’148 has a GS_L output that is asserted when
the device is enabled and one or more of the request inputs is asserted. The
manufacturer calls this “Group Select,” but it’s easier to remember as “Got
Something.” The EO_L signal is an enable output designed to be connected to
the EI_L input of another ’148 that handles lower-priority requests. /EO is
asserted if EI_L is asserted but no request input is asserted; thus, a lower-priority
’148 may be enabled.

Figure 5-50 shows how four 74x148s can be connected in this way to
accept 32 request inputs and produce a 5-bit output, RA4–RA0, indicating the
highest-priority requestor. Since the A2–A0 outputs of at most one ’148 will be
enabled at any time, the outputs of the individual ’148s can be ORed to produce
RA2–RA0. Likewise, the individual GS_L outputs can be combined in a 4-to-2
encoder to produce RA4 and RA3. The RGS output is asserted if any GS output
is asserted.

Ta b l e 5 - 2 2 Truth table for a 74x148 8-input priority encoder.

Inputs Outputs

/EI /I0 /I1 /I2 /I3 /I4 /I5 /I6 /I7 /A2 /A1 /A0 /GS /EO

1 x x x x x x x x 1 1 1 1 1

0 x x x x x x x 0 0 0 0 0 1

0 x x x x x x 0 1 0 0 1 0 1

0 x x x x x 0 1 1 0 1 0 0 1

0 x x x x 0 1 1 1 0 1 1 0 1

0 x x x 0 1 1 1 1 1 0 0 0 1

0 x x 0 1 1 1 1 1 1 0 1 0 1

0 x 0 1 1 1 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

Figure 5-48
Logic symbol for
the 74x148 8-input
priority encoder.Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 36 / 69

Three-State Devices: Three-State Buffers

The most basic three-state device is a three-state buffer, often called a
three-state driver

Section 5.6 Three-State Devices 345

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.6 Three-State Devices
In Sections 3.7.3 and 3.10.5, we described the electrical design of CMOS and
TTL devices whose outputs may be in one of three states—0, 1, or Hi-Z. In this
section, we’ll show how to use them.

5.6.1 Three-State Bu ffers
The most basic three-state device is a three-state buffer, often called a three-state
driver. The logic symbols for four physically different three-state buffers are
shown in Figure 5-52. The basic symbol is that of a noninverting buffer (a, b) or
an inverter (c, d). The extra signal at the top of the symbol is a three-state enable
input, which may be active high (a, c) or active low (b, d). When the enable input
is asserted, the device behaves like an ordinary buffer or inverter. When the
enable input is negated, the device output “floats”; that is, it goes to a high-
impedance (Hi-Z), disconnected state and functionally behaves as if it weren’t
even there.

Three-state devices allow multiple sources to share a single “party line,” as
long as only one device “talks” on the line at a time. Figure 5-53 gives an
example of how this can be done. Three input bits, SSRC2–SSRC0, select one
of eight sources of data that may drive a single line, SDATA. A 3-to-8 decoder,
the 74x138, ensures that only one of the eight SEL lines is asserted at a time,
enabling only one three-state buffer to drive SDATA. However, if not all of the
EN lines are asserted, then none of the three-state buffers is enabled. The logic
value on SDATA is undefined in this case.

three-state buffer
three-state driver

(a) (b) (c) (d)

Figure 5-52 Various three-state buffers: (a) noninverting, active-high enable;
(b) non-inverting, active-low enable; (c) inverting, active-high
enable; (d) inverting, active-low enable.

three-state enable

DEFINING
“UNDEFINED”

The actual voltage level of a floating signal depends on circuit details, such as
resistive and capacitive load, and may vary over time. Also, the interpretation of this
level by other circuits depends on the input characteristics of those circuits, so it’s
best not to count on a floating signal as being anything other than “undefined.”
Sometimes a pull-up resistor is used on three-state party lines to ensure that a floating
value is pulled to a HIGH voltage and interpreted as logic 1. This is especially impor-
tant on party lines that drive CMOS devices, which may consume excessive current
when their input voltage is halfway between logic 0 and 1.

Figure 16: Various three-state buffers: (a) non-inverting, active-high enable;
(b) non-inverting, active-low enable; (c) inverting, active-high enable; (d)
inverting, active-low enable.

When enable input is asserted, device behaves like an ordinary buffer
or inverter

When enable input is negated, device output floats

It goes to a high-impedance (Hi-Z), disconnected state and functionally
behaves as if it were not even there

Three-state devices allow multiple sources to share a single ”party
line,” as long as only one device talks on the line at a time

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 37 / 69

Three-State Devices: Three-State Buffers346 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Typical three-state devices are designed so that they go into the Hi-Z state
faster than they come out of the Hi-Z state. (In terms of the specifications in a
data book, tpLZ and tpHZ are both less than tpZL and tpZH; also see Section 3.7.3.)
This means that if the outputs of two three-state devices are connected to the
same party line, and we simultaneously disable one and enable the other, the first
device will get off the party line before the second one gets on. This is important
because, if both devices were to drive the party line at the same time, and if both
were trying to maintain opposite output values (0 and 1), then excessive current
would flow and create noise in the system, as discussed in Section 3.7.7. This is
often called fighting.

Unfortunately, delays and timing skews in control circuits make it difficult
to ensure that the enable inputs of different three-state devices change “simulta-
neously.” Even when this is possible, a problem arises if three-state devices from
different-speed logic families (or even different ICs manufactured on different
days) are connected to the same party line. The turn-on time (tpZL or tpZH) of a
“fast” device may be shorter than the turn-off time (tpLZ or tpHZ) of a “slow” one,
and the outputs may still fight.

The only really safe way to use three-state devices is to design control logic
that guarantees a dead time on the party line during which no one is driving it.

/SELP

/SELQ

/SELR

/SELS

/SELT

/SELU

/SELV

/SELW

SDATAEN1

/EN2

/EN3

SSRC0

SSRC1

SSRC2

P

1-bit party line

Q

R

S

T

U

V

W

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6

5

4

15

14

13

7

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

fighting

dead time

Figure 17: Eight sources sharing a three-state party line.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 38 / 69

Three-State Devices: Three-State Buffers

Three-state devices are designed so that they go into Hi-Z state faster
than they come out of Hi-Z state

tpLZ and tpHZ are both less than tpZL and tpZH
If outputs of two three-state devices are connected to same party line,
and we simultaneously disable one and enable other, the first device will
get off party line before the second one gets on
If both devices were to drive party line at same time, and if both were
trying to maintain opposite output values (0 and 1), then excessive
current would flow and create noise in system (fighting)

Delays and timing skews in control circuits make it difficult to ensure
that enable inputs of different three-state devices change
simultaneously

Even when this is possible, a problem arises if three-state devices from
different-speed logic families are connected to same party line
tpZL or tpZH of a fast device may be shorter than tpLZ or tpHZ of a slow
one

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 39 / 69

Three-State Devices: Three-State Buffers

The only safe way to use three-state devices is to design control logic
that guarantees a dead time on party line during which no one is
driving it

Dead time must be long enough to account for worst-case differences
between turn-off and turn-on times of devices and for skews in
three-state control signals Section 5.6 Three-State Devices 347

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The dead time must be long enough to account for the worst-case differences
between turn-off and turn-on times of the devices and for skews in the three-state
control signals. A timing diagram that illustrates this sort of operation for the
party line of Figure 5-53 is shown in Figure 5-54. This timing diagram also illus-
trates a drawing convention for three-state signals—when in the Hi-Z state, they
are shown at an “undefined” level halfway between 0 and 1.

5.6.2 Standard SSI and MSI Three-State Bu ffers
Like logic gates, several independent three-state buffers may be packaged in a
single SSI IC. For example, Figure 5-55 shows the pinouts of 74x125 and
74x126, each of which contains four independent noninverting three-state
buffers in a 14-pin package. The three-state enable inputs in the ’125 are active
low, and in the ’126 they are active high.

Most party-line applications use a bus with more than one bit of data. For
example, in an 8-bit microprocessor system, the data bus is eight bits wide, and
peripheral devices normally place data on the bus eight bits at a time. Thus, a
peripheral device enables eight three-state drivers to drive the bus, all at the same
time. Independent enable inputs, as in the ’125 and ’126, are not necessary.

Thus, to reduce the package size in wide-bus applications, most commonly
used MSI parts contain multiple three-state buffers with common enable inputs.
For example, Figure 5-56 shows the logic diagram and symbol for a 74x541
octal noninverting three-state buffer. Octal means that the part contains eight

07SSRC[20]

EN1

/EN2, /EN3

1 2 3

SDATA P Q R SW

max(tpLZmax, tpHZmax) min(tpZLmin, tpZHmin)

dead time

Figure 5-54
Timing diagram for the
three-state party line.

(3)(2)

(1)

(6)(5)

(4)

(11)(12)

(13)

(8)(9)

(10)

(3)(2)

(1)

(6)(5)

(4)

(11)(12)

(13)

(8)(9)

(10)
74x12674x125

Figure 5-55
Pinouts of the 74x125
and 74x126 three-
state buffers.

74x125
74x126

74x541

Figure 18: Timing diagram for the three-state party line of Fig. 17.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 40 / 69

Three-State Devices: SSI and MSI Three-State Buffers

Each of 74x125 and 74x126 contains four independent non-inverting
three-state buffers in a 14-pin package

Section 5.6 Three-State Devices 347

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The dead time must be long enough to account for the worst-case differences
between turn-off and turn-on times of the devices and for skews in the three-state
control signals. A timing diagram that illustrates this sort of operation for the
party line of Figure 5-53 is shown in Figure 5-54. This timing diagram also illus-
trates a drawing convention for three-state signals—when in the Hi-Z state, they
are shown at an “undefined” level halfway between 0 and 1.

5.6.2 Standard SSI and MSI Three-State Bu ffers
Like logic gates, several independent three-state buffers may be packaged in a
single SSI IC. For example, Figure 5-55 shows the pinouts of 74x125 and
74x126, each of which contains four independent noninverting three-state
buffers in a 14-pin package. The three-state enable inputs in the ’125 are active
low, and in the ’126 they are active high.

Most party-line applications use a bus with more than one bit of data. For
example, in an 8-bit microprocessor system, the data bus is eight bits wide, and
peripheral devices normally place data on the bus eight bits at a time. Thus, a
peripheral device enables eight three-state drivers to drive the bus, all at the same
time. Independent enable inputs, as in the ’125 and ’126, are not necessary.

Thus, to reduce the package size in wide-bus applications, most commonly
used MSI parts contain multiple three-state buffers with common enable inputs.
For example, Figure 5-56 shows the logic diagram and symbol for a 74x541
octal noninverting three-state buffer. Octal means that the part contains eight

07SSRC[20]

EN1

/EN2, /EN3

1 2 3

SDATA P Q R SW

max(tpLZmax, tpHZmax) min(tpZLmin, tpZHmin)

dead time

Figure 5-54
Timing diagram for the
three-state party line.

(3)(2)

(1)

(6)(5)

(4)

(11)(12)

(13)

(8)(9)

(10)

(3)(2)

(1)

(6)(5)

(4)

(11)(12)

(13)

(8)(9)

(10)
74x12674x125

Figure 5-55
Pinouts of the 74x125
and 74x126 three-
state buffers.

74x125
74x126

74x541

Figure 19: Pinouts of the 74x125 and 74x126 three-state buffers.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 41 / 69

Three-State Devices: SSI and MSI Three-State Buffers

Most party-line applications use a bus with more than one bit of data

E.g., in an 8-bit microprocessor system, data bus is eight bits wide, and
peripheral devices place data on bus eight bits at a time
A peripheral device enables eight three-state drivers to drive bus, all at
the same time

To reduce package size in wide-bus applications, MSI parts contain
multiple three-state buffers with common enable inputs

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 42 / 69

Three-State Devices: SSI and MSI Three-State Buffers348 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x541

G2

G1

Y1

Y2

Y3

(b)

(a)

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

(18)
Y1

(1)

(19)

(2)

(17)
Y2

(3)

(16)
Y3

(4)

(15)
Y4

(5)

(14)
Y5

(6)

(13)
Y6

(7)

(12)
Y7

(8)

(11)
Y8

G1_L

G2_L

A1

A2

A3

A4

A5

A6

A7

A8
(9)

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18 DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7DB7

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

Microprocessor

READ

INSEL1

INSEL2
D0

D1

D2

D3

D4

D5

D6

DB[0:7]

D7

INSEL3

9

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

Input Port 1

Input Port 2

User
 Inputs

User
 Inputs

Figure 5-57
Using a 74x541 as a
microprocessor input
port.

Figure 20: The 74x541 octal three-state buffer: (a) logic diagram, including pin
numbers for a standard 20-pin dual in-line package; (b) traditional logic symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 43 / 69

Three-State Devices: SSI and MSI Three-State Buffers

348 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x541

G2

G1

Y1

Y2

Y3

(b)

(a)

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

(18)
Y1

(1)

(19)

(2)

(17)
Y2

(3)

(16)
Y3

(4)

(15)
Y4

(5)

(14)
Y5

(6)

(13)
Y6

(7)

(12)
Y7

(8)

(11)
Y8

G1_L

G2_L

A1

A2

A3

A4

A5

A6

A7

A8
(9)

Figure 5-56
The 74x541 octal three-state
buffer: (a) logic diagram,
including pin numbers for a
standard 20-pin dual in-line
package; (b) traditional logic
symbol.

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18 DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7DB7

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

Microprocessor

READ

INSEL1

INSEL2
D0

D1

D2

D3

D4

D5

D6

DB[0:7]

D7

INSEL3

9

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

Input Port 1

Input Port 2

User
 Inputs

User
 Inputs

Figure 5-57
Using a 74x541 as a
microprocessor input
port.

Figure 21: Using a 74x541 as a microprocessor input port.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 44 / 69

Three-State Devices: SSI and MSI Three-State Buffers

In Fig. 21, microprocessor selects Input Port 1 (top 74x541) by
asserting INSEL1 and requests a read operation by asserting READ

Selected 74x541 responds by driving microprocessor data bus with
user-supplied input data
Other input ports may be selected when a different INSEL line is
asserted along with READ

A bus transceiver contains pairs of three-state buffers connected in
opposite directions between each pair of pins, so that data can be
transferred in either direction

A bus transceiver is typically used between two bidirectional buses

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 45 / 69

Three-State Devices: SSI and MSI Three-State Buffers
Section 5.6 Three-State Devices 349

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

individual buffers. Both enable inputs, G1_L and G2_L, must be asserted to
enable the device’s three-state outputs. The little rectangular symbols inside the
buffer symbols indicate hysteresis, an electrical characteristic of the inputs that
improves noise immunity, as we explained in Section 3.7.2. The 74x541 inputs
typically have 0.4 volts of hysteresis.

Figure 5-57 shows part of a microprocessor system with an 8-bit data bus,
DB[0–7], and a 74x541 used as an input port. The microprocessor selects Input
Port 1 by asserting INSEL1 and requests a read operation by asserting READ.
The selected 74x541 responds by driving the microprocessor data bus with user-
supplied input data. Other input ports may be selected when a different INSEL
line is asserted along with READ.

74x245

DIR

G

B1

B2

B3

(b)

(a)

19

1

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

B4

B5

B6

B7

B8

2

12

11

3

4

5

6

7

8

9

(18)
B1

G_L
(19)

DIR
(1)

A1
(2)

(17)
B2A2

(3)

(16)
B3A3

(4)

(15)
B4A4

(5)

(14)
B5A5

(6)

(13)
B6A6

(7)

(12)
B7A7

(8)

(11)
B8A8

(9)

Figure 22: The 74x245 octal three-state transceiver: (a) logic diagram; (b)
traditional logic symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 46 / 69

Three-State Devices: SSI and MSI Three-State Buffers
350 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Many other varieties of octal three-state buffers are commercially avail-
able. For example, the 74x540 is identical to the 74x541 except that it contains
inverting buffers. The 74x240 and 74x241 are similar to the ’540 and ’541,
except that they are split into two 4-bit sections, each with a single enable line.

A bus transceiver contains pairs of three-state buffers connected in
opposite directions between each pair of pins, so that data can be transferred in
either direction. For example, Figure 5-58 on the preceding page shows the logic
diagram and symbol for a 74x245 octal three-state transceiver. The DIR input

74x245

DIR

G

B1

B2

B3

19

1

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

B4

B5

B6

B7

B8

2

12

11

3

4

5

6

7

8

9

Bus B

Bus A

Control
Circuits

ENTFR_L

ATOB

Figure 5-59
Bidirectional buses
and transceiver
operation.

74x540
74x240
74x241
bus transceiver

74x245

Figure 23: Bidirectional buses and transceiver operation.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 47 / 69

Three-State Devices: SSI and MSI Three-State Buffers

Table 14: Modes of operation for a pair of bidirectional buses.

ENTFR L ATOB Operation

0 0 Transfer data from a source on bus B to a destination on bus A
0 1 Transfer data from a source on bus A to a destination on bus B
1 x Transfer data on buses A and B independently

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 48 / 69

Three-State Devices: Three-State Outputs in Verilog

Table 15: Verilog module for a 74x541-like 8-bit three-state driver.

348 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x541

G2

G1

Y1

Y2

Y3

(b)

(a)

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

(18)
Y1

(1)

(19)

(2)

(17)
Y2

(3)

(16)
Y3

(4)

(15)
Y4

(5)

(14)
Y5

(6)

(13)
Y6

(7)

(12)
Y7

(8)

(11)
Y8

G1_L

G2_L

A1

A2

A3

A4

A5

A6

A7

A8
(9)

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18 DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7DB7

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

Microprocessor

READ

INSEL1

INSEL2
D0

D1

D2

D3

D4

D5

D6

DB[0:7]

D7

INSEL3

9

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

Input Port 1

Input Port 2

User
 Inputs

User
 Inputs

Figure 5-57
Using a 74x541 as a
microprocessor input
port.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 49 / 69

Three-State Devices: Three-State Outputs in Verilog

Table 16: Verilog module for a 74x245-like 8-bit transceiver.

Section 5.6 Three-State Devices 349

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

individual buffers. Both enable inputs, G1_L and G2_L, must be asserted to
enable the device’s three-state outputs. The little rectangular symbols inside the
buffer symbols indicate hysteresis, an electrical characteristic of the inputs that
improves noise immunity, as we explained in Section 3.7.2. The 74x541 inputs
typically have 0.4 volts of hysteresis.

Figure 5-57 shows part of a microprocessor system with an 8-bit data bus,
DB[0–7], and a 74x541 used as an input port. The microprocessor selects Input
Port 1 by asserting INSEL1 and requests a read operation by asserting READ.
The selected 74x541 responds by driving the microprocessor data bus with user-
supplied input data. Other input ports may be selected when a different INSEL
line is asserted along with READ.

74x245

DIR

G

B1

B2

B3

(b)

(a)

19

1

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

B4

B5

B6

B7

B8

2

12

11

3

4

5

6

7

8

9

(18)
B1

G_L
(19)

DIR
(1)

A1
(2)

(17)
B2A2

(3)

(16)
B3A3

(4)

(15)
B4A4

(5)

(14)
B5A5

(6)

(13)
B6A6

(7)

(12)
B7A7

(8)

(11)
B8A8

(9)

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 50 / 69

Three-State Devices: Three-State Outputs in Verilog

Table 17: Verilog module for a four-way, 8-bit bus transceiver.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 51 / 69

Three-State Devices: Three-State Outputs in Verilog

Tab. 17
Transceiver handles four 8-bit bidirectional buses, A[1:8], B[1:8],
C[1:8], and D[1:8]

Each bus has its own output enable input, AOE L–DOE L, and a master
enable input MOE L must also be asserted for any bus to be driven
The same source of data is driven to all buses, as selected by S[2:0]

If S2 = 0, buses are driven with a constant value
When selected source is a bus, the selected source bus cannot be driven,
even if it is output-enabled

Table 18: Bus-selection codes for a four-way bus transceiver.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 52 / 69

Multiplexers

A multiplexer is a digital switch
It connects data from one of n sources to its output

358 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.7 Multiplexers
A multiplexer is a digital switch—it connects data from one of n sources to its
output. Figure 5-61(a) shows the inputs and outputs of an n-input, b-bit
multiplexer. There are n sources of data, each of which is b bits wide, and there
are b output bits. In typical commercially available multiplexers, n = 1, 2, 4, 8,
or 16, and b = 1, 2, or 4. There are s inputs that select among the n sources, so
s = log2 n. An enable input EN allows the multiplexer to “do its thing”; when
EN = 0, all of the outputs are 0. A multiplexer is often called a mux for short.

Figure 5-61(b) shows a switch circuit that is roughly equivalent to the mul-
tiplexer. However, unlike a mechanical switch, a multiplexer is a unidirectional
device: information flows only from inputs (on the left) to outputs (on the right).

We can write a general logic equation for a multiplexer output:

Here, the summation symbol represents a logical sum of product terms. Variable
iY is a particular output bit (1 ≤ i ≤ b), and variable iDj is input bit i of source j
(0 ≤ j ≤ n − 1). Mj represents minterm j of the s select inputs. Thus, when the
multiplexer is enabled and the value on the select inputs is j, each output iY
equals the corresponding bit of the selected input, iDj.

Multiplexers are obviously useful devices in any application in which data
must be switched from multiple sources to a destination. A common application
in computers is the multiplexer between the processor’s registers and its
arithmetic logic unit (ALU). For example, consider a 16-bit processor in which

multiplexer

mux

multiplexer

EN

SEL
s

enable

select

D0
b

bD1
b

Dn1
b

n data
sources

(a)

(b)

data
outputY

1D0

1D1

1Dn1

2D0

2D1

2Dn1

bD0

bD1

bDn1

1Y

2Y

bY

SEL EN

Figure 24: Multiplexer structure: (a) inputs and outputs; (b) functional
equivalent.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 53 / 69

Multiplexers

Fig. 24(a) shows inputs and outputs of an n-input, b-bit multiplexer

There are s inputs that select among n sources, so s = dlog2 ne
When EN = 0, all of outputs are 0

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 54 / 69

Multiplexers: Standard MSI Multiplexers

Section 5.7 Multiplexers 359

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

each instruction has a 3-bit field that specifies one of eight registers to use. This
3-bit field is connected to the select inputs of an 8-input, 16-bit multiplexer. The
multiplexer’s data inputs are connected to the eight registers, and its data outputs
are connected to the ALU to execute the instruction using the selected register.

5.7.1 Standard MSI Multipl exers
The sizes of commercially available MSI multiplexers are limited by the number
of pins available in an inexpensive IC package. Commonly used muxes come in
16-pin packages. At one extreme is the 74x151, shown in Figure 5-62, which
selects among eight 1-bit inputs. The select inputs are named C, B, and A, where
C is most significant numerically. The enable input EN_L is active low; both
active-high (Y) and active-low (Y_L) versions of the output are provided.

74x151

(4)

(3)

(2)

(5)

(6)

(1)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(7)

(a) (b)

A′ A B′ B C′ C
D0

D1

D2

D3

D4

D5

D6

D7

A

B

C

EN_L

Y

Y_L

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6

5
Y

Y
3

2

1

15

14

13

12

A

B

C

11

10

9

7

Figure 25: The 74x151 8-input, 1-bit multiplexer: (a) logic diagram, including
pin numbers for a standard 16-pin dual in-line package; (b) traditional logic
symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 55 / 69

Multiplexers: Standard MSI Multiplexers

Table 19: Truth table for a 74x151 8-input, 1-bit multiplexer.

Inputs Outputs

EN L C B A Y Y L

1 x x x 0 1
0 0 0 0 D0 D0’
0 0 0 1 D1 D1’
0 0 1 0 D2 D2’
0 0 1 1 D3 D3’
0 1 0 0 D4 D4’
0 1 0 1 D5 D5’
0 1 1 0 D6 D6’
0 1 1 1 D7 D7’

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 56 / 69

Multiplexers: Standard MSI Multiplexers

360 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Ta b l e 5 - 3 3
Truth table for a
74x151 8-input,
1-bit multiplexer.

Inputs Outputs

EN_L C B A Y Y_L

1 x x x 0 1

0 0 0 0 D0 D0′
0 0 0 1 D1 D1′
0 0 1 0 D2 D2′
0 0 1 1 D3 D3′
0 1 0 0 D4 D4′
0 1 0 1 D5 D5′
0 1 1 0 D6 D6′
0 1 1 1 D7 D7′

(2)

(3)

(5)

(6)

(11)

(10)

(14)

(13)

(1)

(15)(a) (b)

1A

1B

2A

2B

3A

3B

4A

4B

S

G_L 74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

(4)

(7)

(9)

(12)

1Y

2Y

3Y

4Y

Figure 5-63 The 74x157 2-input, 4-bit multiplexer: (a) logic diagram,
including pin numbers for a standard 16-pin dual in-line
package; (b) traditional logic symbol.

Figure 26: The 74x157 2-input, 4-bit multiplexer: (a) logic diagram, including
pin numbers for a standard 16-pin dual in-line package; (b) traditional logic
symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 57 / 69

Multiplexers: Standard MSI Multiplexers

Table 20: Truth table for a 74x157 2-input, 4-bit multiplexer.

Inputs Outputs

G L S 1Y 2Y 3Y 4Y

1 x 0 0 0 0
0 0 1A 2A 3A 4A
0 1 1B 2B 3B 4B

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 58 / 69

Multiplexers: Standard MSI Multiplexers

Table 21: Truth table for a 74x153
4-input, 2-bit multiplexer.

Inputs Outputs

1G L 2G L B A 1Y 2Y

0 0 0 0 1C0 2C0
0 0 0 1 1C1 2C1
0 0 1 0 1C2 2C2
0 0 1 1 1C3 2C3
0 1 0 0 1C0 0
0 1 0 1 1C1 0
0 1 1 0 1C2 0
0 1 1 1 1C3 0
1 0 0 0 0 2C0
1 0 0 1 0 2C1
1 0 1 0 0 2C2
1 0 1 1 0 2C3
1 1 x x 0 0

Section 5.7 Multiplexers 361

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The 74x151’s truth table is shown in Table 5-33. Here we have once again
extended our notation for truth tables. Up until now, our truth tables have speci-
fied an output of 0 or 1 for each input combination. In the 74x151’s table, only a
few of the inputs are listed under the “Inputs” heading. Each output is specified
as 0, 1, or a simple logic function of the remaining inputs (e.g., D0 or D0′). This
notation saves eight columns and eight rows in the table, and presents the logic
function more clearly than a larger table would.

At the other extreme of muxes in 16-pin packages, we have the 74x157,
shown in Figure 5-63, which selects between two 4-bit inputs. Just to confuse
things, the manufacturer has named the select input S and the active-low enable
input G_L. Also note that the data sources are named A and B instead of D0 and
D1 as in our generic example. Our extended truth-table notation makes the
74x157’s description very compact, as shown in Table 5-34.

Intermediate between the 74x151 and 74x157 is the 74x153, a 4-input,
2-bit multiplexer. This device, whose logic symbol is shown in Figure 5-64, has
separate enable inputs (1G, 2G) for each bit. As shown in Table 5-35, its
function is very straightforward.

Inputs Outputs Ta b l e 5 - 3 4
Truth table for a
74x157 2-input,
4-bit multiplexer.

G_L S 1Y 2Y 3Y 4Y

1 x 0 0 0 0

0 0 1A 2A 3A 4A

0 1 1B 2B 3B 4B

Inputs Outputs Ta b l e 5 - 3 5
Truth table for a
74x153 4-input, 2-bit
multiplexer.

1G_L 2G_L B A 1Y 2Y

0 0 0 0 1C0 2C0

0 0 0 1 1C1 2C1

0 0 1 0 1C2 2C2

0 0 1 1 1C3 2C3

0 1 0 0 1C0 0
0 1 0 1 1C1 0
0 1 1 0 1C2 0
0 1 1 1 1C3 0
1 0 0 0 0 2C0

1 0 0 1 0 2C1

1 0 1 0 0 2C2

1 0 1 1 0 2C3

1 1 x x 0 0

74x157

74x153

74x153

1G

1C0

1C1

1C2

1C3

2C0

2C1

2C2

2C3

A

1

7
1Y

9
2Y

6

5

4

3

15

10

11

12

13

B
2

14

2G

Figure 5-64
Traditional logic
symbol for the
74x153.

Figure 27: Traditional logic symbol
for the 74x153.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 59 / 69

Multiplexers: Standard MSI Multiplexers

Some multiplexers have three-state outputs

Enable input, instead of forcing outputs to zero, forces them to Hi-Z
state
Three-state outputs are useful when n-input muxes are combined to
form larger muxes

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 60 / 69

Multiplexers: Expanding Multiplexers

Size of an MSI multiplexer seldom matches characteristics of problem
at hand

E.g., an 8-input, 32-bit multiplexer might be used in design of a
processor
We use 32 74x151 8-input, 1-bit multiplexers, each handling one bit of
all inputs and output
Processor’s 3-bit register-select field is connected to A, B, and C inputs
of all 32 muxes, so they all select same register source at any given time

Another dimension in which multiplexers can be expanded is number
of data sources

E.g., a 32-input, 1-bit multiplexer

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 61 / 69

Multiplexers: Expanding Multiplexers
Section 5.7 Multiplexers 363

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

1/2 74x139

1A

1G

1B

1Y0

1Y1

1Y2

1Y3

1 4

5

6

7

2

3

XEN_L

XA3

XA4

XA0

XA2

XA1

X0

X2

X1

X3

X4

X5

X7

X6

EN3_L

EN2_L

EN1_L

EN0_L 74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

X10

X12

X11

X13

X14

X15

X9

X8

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

X16

X18

X17

X19

X20

X21

X23

X22

X24

X26

X25

X27

X28

X29

X31

X30

1/2 74x20
1

2

4
6

5

XOUT

XO0_L

XO1_L

XO2_L

XO3_L

U1

U5

U4

U3

U2

5

5

5

5

U6

Figure 5-65
Combining 74x151s
to make a 32-to-1
multiplexer.

Figure 28: Combining 74x151s to make a 32-to-1 multiplexer.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 62 / 69

Multiplexers: Expanding Multiplexers

74x251 is identical to ’151 in its pinout and its internal logic design,
except that Y and Y L are three-state outputs

32-to-1 multiplexer can also be built using 74x251s

The circuit is identical to Fig. 28, except that output NAND gate is
eliminated
Instead, Y outputs of four ’251s are simply tied together

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 63 / 69

Multiplexers, Demultiplexers, and Buses

A multiplexer can be used to select one of n sources of data to
transmit on a bus

At far end of bus, a demultiplexer can be used to route bus data to
one of m destinations

364 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The 32-to-1 multiplexer can also be built using 74x251s. The circuit is
identical to Figure 5-65, except that the output NAND gate is eliminated.
Instead, the Y (and, if desired, Y_L) outputs of the four ’251s are simply tied
together. The ’139 decoder ensures that at most one of the ’251s has its three-
state outputs enabled at any time. If the ’139 is disabled (XEN_L is negated),
then all of the ’251s are disabled, and the XOUT and XOUT_L outputs are
undefined. However, if desired, resistors may be connected from each of these
signals to +5 volts to pull the output HIGH in this case.

TURN ON THE
BUBBLE

MACHINE

The use of bubble-to-bubble logic design should help your understanding of these
multiplexer design examples. Since the decoder outputs and the multiplexer enable
inputs are all active low, they can be hooked up directly. You can ignore the inver-
sion bubbles when thinking about the logic function that is performed—you just say
that when a particular decoder output is asserted, the corresponding multiplexer is
enabled.

Bubble-to-bubble design also provides two options for the final OR function
in Figure 5-65. The most obvious design would have used a 4-input OR gate
connected to the Y outputs. However, for faster operation, we used an inverting gate,
a 4-input NAND connected to the /Y outputs. This eliminated the delay of two
inverters—the one used inside the ’151 to generate Y from /Y, and the extra inverter
circuit that is used to obtain an OR function from a basic NOR circuit in a CMOS or
TTL OR gate.

(a)

(b)

SRCA

SRCB

SRCC

SRCZ

SRCA

SRCB

SRCC

SRCZ

BUS

BUS

DSTA

DSTB

DSTC

DSTZ

SRCSEL DSTSEL

multiplexer demultiplexer

MUX DMUX

DSTA

DSTB

DSTC

DSTZ

SRCSEL DSTSEL

Figure 5-66
A multiplexer driving a bus
and a demultiplexer
receiving the bus:
(a) switch equivalent;
(b) block diagram symbols.

Figure 29: A multiplexer driving a bus and a demultiplexer receiving the bus:
(a) switch equivalent; (b) block-diagram symbols.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 64 / 69

Multiplexers, Demultiplexers, and Buses

Function of a demultiplexer is inverse of a multiplexer’s

A b-bit, n-output demultiplexer has b data inputs and s inputs to select
one of n = 2s sets of b data outputs

A binary decoder with an enable input can be used as a demultiplexer

Section 5.7 Multiplexers 365

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

5.7.3 Multiplexers, Demultiplexers, and Buses
A multiplexer can be used to select one of n sources of data to transmit on a bus.
At the far end of the bus, a demultiplexer can be used to route the bus data to one
of m destinations. Such an application, using a 1-bit bus, is depicted in terms of
our switch analogy in Figure 5-66(a). In fact, block diagrams for logic circuits
often depict multiplexers and demultiplexers using the wedge-shaped symbols
in (b), to suggest visually how a selected one of multiple data sources gets direct-
ed onto a bus and routed to a selected one of multiple destinations.

The function of a demultiplexer is just the inverse of a multiplexer’s. For
example, a 1-bit, n-output demultiplexer has one data input and s inputs to select
one of n = 2s data outputs. In normal operation, all outputs except the selected
one are 0; the selected output equals the data input. This definition may be
generalized for a b-bit, n-output demultiplexer; such a device has b data inputs,
and its s select inputs choose one of n = 2s sets of b data outputs.

A binary decoder with an enable input can be used as a demultiplexer, as
shown in Figure 5-67. The decoder’s enable input is connected to the data line,
and its select inputs determine which of its output lines is driven with the data
bit. The remaining output lines are negated. Thus, the 74x139 can be used as a
2-bit, 4-output demultiplexer with active-low data inputs and outputs, and the
74x138 can be used as a 1-bit, 8-output demultiplexer. In fact, the manufactur-
er’s catalog typically lists these ICs as “decoders/demultiplexers.”

5.7.4 Multiplexers in ABEL and PLDs
Multiplexers are very easy to design using ABEL and combinational PLDs. For
example, the function of a 74x153 4-input, 2-bit multiplexer can be duplicated
in a PAL16L8 as shown in Figure 5-68 and Table 5-36. Several characteristics
of the PLD-based design and program are worth noting:

• Signal names in the ABEL program are changed slightly from the signal
names shown for a 74x153 in Figure 5-64 on page 361, since ABEL does
not allow a number to be used as the first character of a signal name.

• A 74x153 has twelve inputs, while a PAL16L8 has only ten inputs. There-
fore, two of the ’153 inputs are assigned to 16L8 I/O pins, which are no
longer usable as outputs.

demultiplexer

1/2 74x139

A

G

B

Y0

Y1

Y2

Y3

(b)

DST0DATA_L

DST1DATA_L

DST2DATA_L

DST3DATA_L

SRCDATA_L

DSTSEL0

DSTSEL1

2-to-4 decoder

A

G

B

Y0

Y1

Y2

Y3

(a)

DST0DATA

DST1DATA

DST2DATA

DST3DATA

SRCDATA

DSTSEL0

DSTSEL1

Figure 5-67 Using a 2-to-4 binary decoder as a 1-bit, 4-output demultiplexer:
(a) generic decoder; (b) 74x139.

Figure 30: Using a 2-to-4 binary decoder as a 1-bit, 4-output demultiplexer:
(a) generic decoder; (b) 74x139.

Decoder’s enable input is connected to data line, and its select inputs
determine which of its output lines is driven with data bit

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 65 / 69

Multiplexers in Verilog

Table 22: Dataflow Verilog program for a 4-input, 8-bit multiplexer.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 66 / 69

Multiplexers in Verilog

Table 23: Behavioral Verilog module for a 4-input, 8-bit multiplexer.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 67 / 69

Multiplexers in Verilog

Table 24: Behavioral Verilog program
for a specialized 4-input, 18-bit
multiplexer.

Table 25: Function table for a
specialized 4-input, 18-bit
multiplexer.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 68 / 69

References

John F. Wakerly, Digital Design: Principles and Practices (4th
Edition), Prentice Hall, 2005.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 69 / 69

