Design of Digital Systems Il

Combinational Logic Design Practices (3)

Moslem Amiri, Vaclav P¥enosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic

amiri@mail.muni.cz
prenosil@fi.muni.cz

Fall, 2014

Exclusive-OR and Exclusive-NOR Gates

@ An XOR gate is a 2-input gate whose output is 1 if its inputs are
different

XeoyY=X - -Y+X-Y
@ An XNOR gate is a 2-input gate whose output is 1 if its inputs are the
same

Table 1: Truth table for XOR and XNOR functions.

X|Y[XaY|XaY)

00 0 1
011 1 0
110 1 0
111 0 1

2/170

Exclusive-OR and Exclusive-NOR Gates

(a) X :
o>
F
[
(b) X
] F
Y

Figure 1: Multigate designs for the 2-input XOR function: (a) AND-OR; (b)
three-level NAND.

3/170

Figure 2. Equivalent symbols for (a) XOR gates; (b) XNOR gates.

@ As seen in Fig. 2, any two signals (inputs or output) of an XOR or
XNOR gate may be complemented without changing resulting logic
function

4/170

() 11

(b) 11

Figure 3: Cascading XOR gates: (a) daisy-chain connection; (b) tree structure.

5/ 170

o Fig. 3
o (a) is an odd-parity circuit
o lIts output is 1 if an odd number of its inputs are 1

o (b) is also an odd-parity circuit, but it is faster
o If output of either circuit is inverted, we get an even-parity circuit

6/ 70

Parity Circuits: The 74x280 9-Bit Parity Generator

74x280

() s8] A
B
0]

= D EVEN >
2|

1i F ODD 6
G
(€] A_® 2l

c (10)

(D _
E 12) ®) EVEN
£ _(3) 7

D \
TG (6)
| @

OoDD

Figure 4. The 74x280 9-bit odd/even parity generator: (a) logic diagram,
including pin numbers for a standard 16-pin dual in-line package; (b) traditional
logic symbol.

7/170

Parity Circuits: Parity-Checking Applications

@ A parity bit is used in error-detecting codes to detect errors in
transmission and storage of data

o In an even-parity code, parity bit is chosen so that total number of 1
bits in a code word is even
o Parity circuits like 74x280 are used both to generate correct value of
parity bit when a code word is stored or transmitted, and to check
parity bit when a code word is retrieved or received

8 /70

Parity-Checking Applications

74x08
: 6 ERROR
5
D[0:7] Ul
74L.S04
RD 1 {>c 2 RD_L
WR U3
74x280 Memory Chips 74x541
Do 8 ‘o6l
A READ
L P
B WRITE DOO
c DINO DOUTO a1
5 DO1 3
D EVEN |— DIN1 DOUT1 002 A2 Y2
E DIN2 DOUT2 4 A3 Y3
6 PI DO3 5
F OoDD DIN3 DOUT3 004 A4 Y4
G DIN4 DOUT4 6 A5 Y5
74x08 DO5 7
1 H DINS DOUTS A6 Y6
3 DO6 8
2 | DIN6 DOUT6 A7 Y7
u2 DO7 9
Ul DIN7 DOUT7 A8 Y8
PIN POUT
PO T S~ —

Figure 5: Parity generation and checking for an 8-bit-wide memory.

9/170

Parity Circuits: Parity-Checking Applications

o In

o In

Fig. 5, to store a byte into memory

Specify an address

Place byte on D[0-7]

Generate its parity bit on PIN

Assert WR

'280's ODD output is connected to PIN, so that total number of 1s
stored is even

Fig. 5, to retrieve a byte

Specify an address

Assert RD

A 74x541 drives byte onto D bus, and '280 checks its parity

If parity of 9-bit word is odd during a read, ERROR signal is asserted

10 / 70

Exclusive-OR Gates and Parity Circuits in Verilog

Table 2: Dataflow-style Verilog module for a 3-input XOR device.

module Vrxor3(A, B, C, Y);
input A, B, C;
output Y;

assign Y = A ~ B ~ C;
endmodule

11/ 70

Exclusive-OR Gates and Parity Circuits in Verilog

Table 3: Behavioral Verilog program for a 9-input parity checker.

module Vrparity9(I, EVEN, 0ODD);
input [1:9] I;
output EVEN, ODD;
reg p, EVEN, ODD;
integer j;

always @ (I) begin
p = 1'b0;
for (j =1; j <= 9; j = j+1)

74x280

if (I[3]1) p = “p; 5;
else p = p; e s
QDD = p; —{p Even
EVEN = “p; 13E oop |
end e
endmodule A

12 /70

Exclusive-OR Gates and Parity Circuits in Verilog

@ ASIC and FPGA libraries contain two- and three-input XOR and
XNOR functions as primitives

o In CMOS ASICs, these primitives are realized very efficiently at
transistor level using transmission gates

o Fast and compact XOR trees can be built using these primitives

o Typical Verilog synthesis tools are not smart enough to create an
efficient tree structure from a behavioral program like Tab. 3

o Instead, we can use a structural program to get exactly what we want

e Tab. 4

13 /70

Exclusive-OR Gates and Parity Circuits in Verilog

Table 4: Structural Verilog program for a 74x280-like parity checker.

module Vrparity9s(I, EVEN, 0DD);
input [1:9] I;
output EVEN, 0ODD;
wire Y1, Y2, Y3, Y3N;

Vrxor3 U1 (I[1], I[2], I[3], Y1); 741280
Vrxor3 U2 (I[4], I[5], I[B], Y2);
Vrxor3 U3 (I[7], I[8], I[9], ¥3);

assign Y3N = "Y3; i
Vrxor3 U4 (Y1, Y2, Y3, ODD); B
Vrxor3 U5 (Y1, Y2, Y3N, EVEN);

endmodule
A_®
5_®
60
b_(1)
g2 . O even
RTE)
PG \
h_@ ©_ opp
@

©

©

“—IeTMOO®>

5

EVEN -

14 /70

@ A comparator is a circuit that compares two binary words and
indicates whether they are equal

o Magnitude comparators interpret their input words as signed or
unsigned numbers and also indicate an arithmetic relationship (greater
or less than) between words

15 / 70

Comparators: Comparator Structure

@ XOR or XNOR gates may be viewed as 1-bit comparators

@) gg:):Dﬂ
s o>—
DIFF
BO
Al DIFF1

B1
DIFF
A2 DIFF2
B2

A3 DIFF3
B3

Figure 6: Comparators using XOR gates: (a) 1-bit comparator; (b) 4-bit
comparator.

@ We can build an n-bit comparator using n XOR gates and an n-input
OR gate
@ Wider OR functions can be obtained by cascading individual gates
o A faster circuit is obtained by arranging gates in a tree-like structure

o Using NORs and NANDs in place of ORs makes circuit even faster
16 / 70

Comparators: Comparator Structure

o Comparators can also be built using XNOR gates

o A 2-input XNOR gate produces a 1 output if its two inputs are equal
o A multibit comparator can be constructed using one XNOR gate per bit,
and ANDing all of their outputs together
o Output of AND function is 1 if all of individual bits are pairwise equal
@ n-bit comparators in this subsection are called parallel comparators

o They look at each pair of input bits simultaneously and deliver 1-bit
comparison results in parallel to an n-input OR or AND function

17 /70

Comparators: Iterative Circuits

@ An iterative circuit contains n identical modules, each of which has
both primary inputs and outputs and cascading inputs and outputs
o Left-most cascading inputs are called boundary inputs and are
connected to fixed logic values
o Right-most cascading outputs are called boundary outputs and usually
provide important information

primary inputs

Plg cascading Ply cascading Pl,_1

H input ﬂ output H
PI \\ PI // PI
CO Cy Ca le Cn

—>|Cl module CO[———)|Cl module CO——) o o o ——)|Cl module COf——)

PO PO PO

boundary boundary
inputs outputs

PO, PO, PO, 4

primary outputs
Figure 7: General structure of an iterative combinational circuit.

18 / 70

Comparators: Iterative Circuits

o lterative circuits are suited to problems that can be solved by an
iterative algorithm
O Set G to its initial value and set / to 0
@ Use G and PI; to determine values of PO; and Cji1
© Increment i
Q If i < n, go to step 2

19 /70

Comparators: An lterative Comparator Circuit

@ To compare two n-bit values X and Y
@ Set EQgto1l andsetito0
@ If EQ; is 1 and X; and Y; are equal, set EQ;;1 to 1, else set EQ;;1 to 0
@ Increment j
@ If i < n, go to step 2

®) X0 YO X1 Y1l X2 Y2 X(N-1) Y(N-1)

X Y X Y X Y X

cMP cMP cMP cMP
1——|EQI EQO EQ1 EQI EQO EQ2 EQI EQO Es ... EQ-D EQI EQO | EQN

X Y cMP
(@
EQO
EQI O

Figure 8: An iterative comparator circuit: (a) module for one bit; (b) complete
circuit.

20 / 70

Comparators: An lterative Comparator Circuit

o Parallel comparators are preferred over iterative ones
o lterative comparators are very slow
o Cascading signals need time to "ripple” from leftmost to rightmost
module
o lterative circuits that process more than one bit at a time (using
modules like 74x85, discussed next) are much more likely to be used in
practical designs

21/ 70

Comparators: Standard MSI Magnitude Comparators

@ 74x85 is a 4-bit comparator which provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal
output (AEQBOUT)

o '85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN) for
combining multiple '85s to create comparators for more than four bits

74x85

ALTBIN ALTBOUT
AEQBIN AEQBOUT o
AGTBIN AGTBOUT
A0
BO
Al
B1
A2
B2
A3
B3

10

12
11
13
14
15

Figure 9: Traditional logic symbol for the 74x85 4-bit comparator.

22 /70

Comparators: Standar

MSI Magnitude Comparators

74x85 74x85

2} ALTBIN ALTBOUT
AEQBIN AEQBOUT
; AGTBIN AGTBOUT |>

2| ALTBIN ALTBOUT
AEQBIN AEQBOUT
; AGTBIN AGTBOUT

o~

74x85

=Y

o

ALTBIN ALTBOUT

3| AEQBIN AEQBOUT
3 AGTBIN AGTBOUT

A0

A0 A0
BO BO
Al Al
B1 B1
A2 A2
B2 B2
A3 A3
B3 B3

XD[011]

YD[011]

Figure 10: A 12-bit comparator using 74x8bs.

7 XLTY
6 XEQY
5 XGTY

23 /70

Comparators: Standard MSI Magnitude Comparators

o Cascading inputs are defined so outputs of an '85 that compares
less-significant bits are connected to inputs of an '85 that compares
more-significant bits

o For each '85

AGTBOUT = (A> B)+ (A= B)-AGTBIN
AEQBOUT = (A= B) - AEQBIN
ALTBOUT = (A< B)+ (A= B)-ALTBIN
Arithmetic comparisons can be expressed using normal logic
expressions, e.g.,
(A>B)=A3-B3+
(A3® B3) - A2- B2+
(A3@® B3)' - (A2@® B2)' - Al- B1'+
(A3® B3) - (A2 B2)' - (Al @ B1)' - A0 - B0

24 / 70

Comparators: Standard MSI Magnitude Comparators

Figure 11:

74x682

—“lpo
—p1
—lp2
—2lp3
P4
— o4
—Zlps
—lpe
—p7

PEQQ

PGTQ

19

Traditional logic symbol for the 74x682 8-bit comparator.

25 / 70

Comparators: Standard MSI Magnitude Comparators

Figure 12: Logic diagram for the 74x682 8-bit comparator, including pin

numbers for a standard 20-pin dual in-line package.
26 / 70

Comparators: Standard MSI Magnitude Comparators

e In Fig. 12
o Top half of circuit checks two 8-bit input words for equality
o PEQQ-L output is asserted if all eight input-bit pairs are equal
o Bottom half of circuit compares input words arithmetically
o PGTQ.L is asserted if P[7-0] > Q[7-0]
@ 74x682 does not have cascading inputs and a "less than” output

o However, any desired condition can be formulated as a function of
PEQQ_L and PGTQ_L outputs

27 / 70

Comparators: Standard MSI Magnitude Comparators

PNEQ
74x04
1 oI 2 PEQQ
u2
74x04
3 oI ! pGTQ
74x682 uz
74%00
r 1 3
@ PGEQ
19
PEQQ [0 us
PLEQ
PGTQ j0— 74%08
1
2 ® pLTQ
U1 U4

Figure 13: Arithmetic conditions derived from 74x682 outputs.

28 / 70

Comparators in HDLs

o Comparing two bit-vectors for equality or inequality is done in an HDL
program, in relational expressions using operators such as "==" and

o Given relational expression " (A==B)", where A and B are bit vectors
each with n elements, compiler generates the logic expression
(AA@B1) + (MA@ B)+--+ (A ® B,))
o In a PLD, this is realized as a complemented sum of 2n product terms
((Ar- B+ AL~ Bi) + (A2 By + Ay Bo) + -+ + (An- By + AL - Bn))'
o Logic expression for " (A!=B)" is complement of the ones above

29 / 70

Comparators in HDLs

o Given relational expression " (A<B)", where A and B are bit vectors each
with n elements, HDL compiler first builds n equations of the form

Li=(A;-(Bi+ Li-1)) + (Ai- Bi - Li-1)
fori=1ton,and Lo =0
o This is an iterative definition of less-than function, starting with LSB
o Logic equation for " (A<B)" is the equation for L,
o After creating n equations, HDL compiler collapses them into a single
equation for L, involving only A and B
o In case of a compiler that is targeting a PLD, final step is to derive a
minimal sum-of-products expression from L, equation
o Collapsing an iterative circuit into a two-level sum-of-products
realization creates an exponential expansion of product terms
@ Requires 2" — 1 product terms for an n-bit comparator
o Results for ">" comparators are identical
o Logic expressions for ">=" and "<=" are complements of expressions for
"<" and ">"

30 / 70

Comparators in Verilog

@ Verilog has built-in comparison operators: >, >=, <, <=, ==, I=
o These operators can be applied to bit vectors
o Bit vectors are interpreted as unsigned numbers with the MSB on left,
regardless of how they are numbered
o Verilog-2001 also supports signed arithmetic
o Verilog matches up operands of different lengths, by adding zeros on left
o Equality and inequality checkers are small and fast
o Built from n XOR or XNOR gates and an n-input AND or OR gate
o Checking for greater-than or less-than
o The number of product terms needed for an n-bit comparator grows
exponentially, on order of 2", when comparator is realized as a two-level
sum of products
o A two-level sum-of-products realization is possible only for small values
of n (4 or less)
o For larger values of n, compiler may synthesize a set of smaller
comparator modules, along the lines of 74x85 and 74x682 parts, whose
outputs may be cascaded or combined to create larger comparison result

31/ 70

Comparators in Verilog

Table 5 Verilog module with functionality similar to 74x85 magnitude
comparator.

module Vr74x85(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

74x85

always @ (A or B or AGTBIN or ALTBIN or AEQBIN) z ALTBIN ALTBOUT ;
if (A == B) - AZQEIN AZQEEUT :
AGTBIN AGTBOUT
begin AGTBOUT = AGTBIN; ALTBOUT = ALTBIN; AEQBOUT = AEQBIN; end ‘: A0
else if (A > B) =%
begin AGTBOUT = 1'b1l; ALTBOUT = 1'b0; AEQBOUT = 1'b0; end 1 :1
else jj A2
begin AGTBOUT = 1'b0O; ALTBOUT = 1'bl; AEQBOUT = 1'b0; end =152
endmodule 1 ;i

o Module of Tab. 5 does not perform an explicit check for A<B, to avoid
synthesizing another comparator
o If we missed this optimization and included A<B check, it is necessary
also to include a final else statement (Tab. 6)
o Without final else clause, compiler will infer a latch to hold previous
value of each cascading output if none of logic paths through always

block assigned a value to that output 52 /70

Comparators in Verilog

Table 6: Verilog comparator module with three explicit comparisons.

module Vr74x85s(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT):
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

alwvays @ (A or B or AGTBIN or ALTBIN or AEQBIN)
if (A == B)

74x85

begin AGTBOUT = AGTBIN; ALTBOUT = ALTBIN; AEQBOUT = AEQBIN; end “{aTen areour (L
else if (A > B) | e soraout 2
begin AGTBOUT = 1'bl; ALTBOUT = 1'b0O; AEQBOUT = 1'bO; end 12 A0
else if (A < B) - i‘l’
begin AGTBOUT = 1'b0; ALTBOUT = 1'bl; AEQBOUT = 1'b0; end EEl
else ij A2
begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end = ii
endmodule Fl ey

33 /70

Comparators in Verilog

Table 7: Verilog comparator module with cascading from more to less

significant stages.

module Vr74x85r(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);

input [3:0] A, B;

input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

always @ (A or B or AGTBIN or ALTBIN or AEQBIN)

if (AGTBIN)

begin AGTBOUT = 1'bl; ALTBOUT = 1'bO; AEQBOUT
else if (ALTBIN)

begin AGTBOUT = 1'b0; ALTBOUT = 1'bl; AEQBOUT
else if (AEQBIN)

begin

AGTBOUT = (A > B) ? 1'b1 : 1'bO ;

AEQBOUT = (A == B) ? 1'bl : 1'b0;
ALTBOUT = ~“AGTBOUT & ~AEQBOUT;
end
else
begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT
endmodule

1'b0;

1'b0;

1'bx;

end

end

end

74x85

w

=

5

S

15

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT
A0
BO
Al
B1
A2
B2
A3
B3

@ With a series of if-else statements, compiler synthesizes priority logic

o It checks the first condition, and only then the second, and so on

o We can use a case statement instead

34 /70

Comparators in Verilog

Table 8: Verilog comparator module using a case statement.

module Vr74x85rc(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
case ({AGTBIN, ALTBIN, AEQBIN})
3'b100: begin AGTBOUT = 1'bl; ALTBOUT = 1'bO; AEQBOUT = 1'b0; end
3'b010: begin AGTBOUT = 1'bO; ALTBOUT = 1'bl; AEQBOUT = 1'bO; end 5
) ALTBIN ALTBOUT
3'b001: begin 3

AEQBIN AEQBOUT
AGTBOUT = (A > B) 7 1'bl : 1'b0 ; AGTBIN AGTBOUT

74x85

AEQBOUT = (A == B) ? 1'bl : 1'b0; A0

ALTBOUT = "AGTBOUT & ~AEQBOUT; | 5

end 1lgy

default: begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end ij A2

endcase] 22
endmodule 1

35/ 70

Comparators in Verilog

Table 9: Verilog comparator module using continuous assignments.

74x85

module Vr74x85re(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT
A0

w

=

5

©

assign AGTBOUT = AGTBIN | (AEQBIN & ((A > B) 7 1'bl : 1'b0));

assign AEQBOUT = AEQBIN & ((A == B) 7 1'bl : 1'b0) ;

assign ALTBOUT = ~AGTBOUT & ~AEQBOUT; |2
endmodule

B

36 / 70

Adders, Subtractors, and ALUs

@ The same addition rules and therefore the same adders are used for
both unsigned and two's-complement numbers

@ An adder can perform subtraction as addition of minuend and
complemented subtrahend

o But we can also build subtractor circuits that perform subtraction
directly

o ALUs perform addition, subtraction, or any of several other operations

according to an operation code supplied to device

37/ 70

Adders, Subtractors, and ALUs: Half Adders & Full Adders

@ A half adder adds two 1-bit operands X and Y, producing a 2-bit sum

HS=XaY
=X-Y+X .Y
co=X-Y

(HS = half sum, and CO = carry-out)

@ To add operands with more than one bit, we must provide for carries
between bit positions

o Building block for this operation is called a full adder

S=XaoY®CIN
=X-Y -CN+X"-Y-CIN+X-Y-CIN+X-Y-CIN
COUT =X-Y+X-CIN+Y-CIN

38/ 70

Adders, Subtractors, and ALUs: Half Adders & Full Adders

full adder

X —4
Y s —% s

7 —v I
CIN

— CIN COUT [—

—/ cout }(\{

—-— COUT CIN |=—

(CY

S

J

Figure 14: Full adder: (a) gate-level circuit diagram; (b) logic symbol; (c)
alternate logic symbol suitable for cascading.

Y
%

(©

39 / 70

Adders, Subtractors, and ALUs: Ripple Adders

@ A ripple adder is a cascade of n full-adder stages, each of which
handles one bit, to add two n-bit binary words

X3 Y3 X2 Y2 X1 Y1 Xo Yo
X Y X Y X Y X Y
C3 C2 C1
¢, -—— COUT CIN COUT CIN COUT CIN COUT CIN f=—o cg
S S S S
S3 S2 S1 So

@ ¢p is normally set to 0

Figure 15: A 4-bit ripple adder.

40 / 70

Adders, Subtractors, and ALUs: Ripple Adders

o A ripple adder is slow

o In worst case, a carry must propagate from least significant full adder to
most significant one

o E.g., adding 11...11 and 00...01

o Total worst-case delay

tapp = txycout + (N — 2) - tcincout + tcins

o txycour: delay from X or Y to COUT in least significant stage
o tcincour: delay from CIN to COUT in middle stages
o tcins: delay from CIN to S in most significant stage

41/ 70

Adders, Subtractors, and ALUs: Subtractors

@ Binary subtraction is performed similar to binary addition, but using
borrows (bj, and bo,t) between steps, and producing a difference bit d
@ When subtracting y from x
x>y + bin — bout =0
X <y+ bjp — boyr =1
d:X_y_ bin + 2boyut

Table 10: Binary subtraction table.

bin | x |y | bout | d
0 |0|0] O 0
0|01 1 1
0|1/0]| O 1
0|11 0 0
1 /0(0 1 1
1101 1 0
1 (1(0] O 0
1 |11 1 1

42 /70

Adders, Subtractors, and ALUs: Subtractors

o Logic equations for a full subtractor

D=Xa&Y®BIN
BOUT =X"-Y +X'-BIN+ Y - BIN

@ Manipulating logic equations above

BOUT =X"-Y+X'-BIN+Y - BIN
BOUT = (X +Y')- (X + BIN')- (Y'+ BIN)
=X-Y'+X-BIN+Y'-BIN
D=X®Y®BIN

=XaY &BIN

o Comparing with equations for a full adder, we can build a full
subtractor from a full adder

o Any n-bit adder circuit can be made to function as a subtractor by
complementing subtrahend and treating carry-in and carry-out signals as
borrows with opposite active level

43/ 70

Adders, Subtractors, and ALUs: Subtractors
R o] R

X Y X Y
74x999 s 74x999 3
-+—— COUT CIN BOUT BIN |+— -+——Q| BOUT BIN [OQ=—
S D D
E ! e
d
@ Xp-1 Yn1 Xp-2 Yn-2 Xo Yo
1 3 13
74x04 74x04 74x04
2 4 12
1 2 1 2 1 2
X Y X Y X Y
5 74x999 3 blys s 74x999 5 b_ln, bl s 74x999 5 bl
bl « O/ BOUT BINjJO=~————QBOUT BIN|O oy Q| BOUT BIN|Q=—1
D D D
8 2 8
dml dmz dl)

Figure 16: Subtractor design using adders: (a) full adder; (b) full subtractor;
(c) interpreting 74x999 as a full subtractor; (d) ripple subtractor.

44 / 70

Adders, Subtractors, and ALUs: Carry-Lookahead Adders

@ A faster adder than ripple can be built by obtaining each sum output
s = x; B y; ® ¢; with just two levels of logic
o This can be accomplished by expanding ¢; in terms of xp — x;_1,
Yo — Yi—1, and ¢o
o More complexity is introduced by expanding XORs
o We can keep XORs and design ¢; logic using ideas of carry lookahead

Xj hSi \
Yi G Sj

Xj-1
[)
[)
Xg — Carry
. Lookahead
Yi-1 Logic
[)
L)
Yo
Co

Figure 17: Structure of one stage of a carry-lookahead adder.
45 /70

Adders, Subtractors, and ALUs: Carry-Lookahead Adders

o Adder stage i is said to generate a carry if it produces a ¢j; 1 =1
independent of inputs on xg — x;_1, Yo — ¥i—1, and ¢y
o This happens when both of addend bits of that stage are 1
8i=Xi'Yi

o Adder stage i is said to propagate carries if it produces a ¢iy1 =1 in
presence of an input combination of xp — x;_1, yo — yi—1, and ¢ that
causesa ¢ =1

o This happens when at least one of addend bits of that stage is 1
pi = Xi +Yi
@ Carry output of a stage can be written as

Civ1 =& +Ppi-Ci

46 / 70

Adders, Subtractors, and ALUs: Carry-Lookahead Adders

o To eliminate carry ripple, we recursively expand c; term for each stage
and multiply out to obtain a two-level AND-OR expression

C1 =80+ Ppo-Co
GO =g1+p1-c
=g1+p1- (g + po- o)
=81+ p1-8 +p1-Po-Co
=8 +p2C
=g +p2-(g1+p1-8 +p1-po- o)
=g +tp2-g+p2-p1-Go+tp2-p1-po-Co
C4 =83+ p3-c3
=g +p3-(g2+p2-g+p2-p1-g+p2-p1po-co)
=83+ p3-g+pP3-p2-8L+pP3-P2-P1-80+pP3-P2-P1-Po" O
Hence, " Carry Lookahead Logic" in Fig. 17 has three levels of delay;

one for generate and propagate signals, and two for SOPs shown

47 / 70

Adders, Subtractors, and ALUs: MSI Adders

@ 74x283 uses carry-lookahead technique

74x283
—co

—la0 sol—
—°lBo

—a s1P—
—lB1
s
Ll

-{E} A3 s3p
B ol

Figure 18: Traditional logic symbol for the 74x283 4-bit binary adder.

48 / 70

Adders, Subtractors, and ALUs: MSI Adders

o 74x283

o It produces g/ and p}, since inverting gates are faster
e Manipulating half-sum equation

hsi = x; @ y;

=X Y +X i

=Xy +Xxi-Xi+x-yi+yi-y

= (xi +yi1) - (X +)

=(xi+yi)- (xi-yi)

= pl- . gll
Thus, an AND gate with an inverted input is used instead of an XOR
gate to create each half-sum bit

49 / 70

Adders, Subtractors, and ALUs: MSI Adders

o 74x283

o It creates carry signals using an INVERT-OR-AND structure (=
AND-OR-INVERT), which has same delay as a single inverting gate

Cit1=8i+pi-CG=pi-g+pi-c=p (g+c)

(pi is always 1 when g; is 1)

C1=P0'(

c=p(g+a)

=p1-(g1+po- (g0 + @))

=p1-(g1+po) - (&1 + & + o)
a=p (g+c)

=p2-(g2+p1-(g1+po)-(81+ 8 +)

=p2-(g2+p1) (&2+8g+po): (& +8g +8 +)
c=p3-(g3+c)

=p3-(gs+p2-(g2+p1) (&2+8 +po) (&2+8 + 8 + a))

=p3-(g3+p2) (g3+g2+p1) (g3+ g +8+po)

(g3 + &+ 81+ 80+ @)

50 / 70

Adders, Subtractors, and ALUs: MSI Adders

80— % hsy
0 o © g
o

Figure 19: Logic diagram for the 74x283 4-bit binary adder.

51 /70

Adders, Subtractors, and ALUs: MSI Adders

o Propagation delay from CO input to C4 output of 283 is very short,
same as two inverting gates
o As a result, fast group-ripple adders with more than four bits can be
made by cascading carry outputs and inputs of '283s
o Total propagation delay from CO to C16 in Fig. 20 is same as that of
eight inverting gates

52 / 70

LUs: MSI Adders

X[15:0]
Y[15:0]
74x283 74x283
co co co
X0 Slpg sol 0 A soll =
B0 BO
Al st St A st
B1 BL
A2 52 13 S2 A2 52 13 S10
B2 B2
A3 s3 10 S3 A3 s3 10 S11

c4 c4

74x283
co

A SO G A soli St

B0 BO

Al st Al st 3B

B1 B1

A2 s22 ° A2 s22 S

B2 B2

A s3fe ¥ A3 s32 S

B [0 cs e L R 16

u2 U4
S[15:0]

Figure 20: A 16-bit group-ripple adder.

53 / 70

Adders, Subtractors, and ALUs: MSI ALUs

@ An arithmetic and logic unit (ALU) is a combinational circuit that can
perform any of a number of different arithmetic and logical operations
on a pair of b-bit operands

e The operation to be performed is specified by a set of function-select
inputs

54 / 70

Adders, Subtractors, and ALUs: MSI ALUs

Table 11: Functions performed by the 74x181 i
4-bit ALU. e oo
—: s2 ploi
—S3
73 M AsBE
Inputs Function R Z']N Folo®
S3]S2|S1]so M = 0 (arithmetic) M =1 (logic) 98 0
- —0o|AL Flio—
ojof[o0]oO F = A minus 1 plus CIN F=A 2ds1
00|01 F=A- B minus 1 plus CIN F=A+8B oAz F2lo
0|0 1|0 F=A-B minus1plus CIN F=A+B Zge2 .
00| 1|1 F=1111plus CIN F=1111 —om mpo—
0|1|0|0 F=Aplus(A+B)plus CIN F=A.B 9% courf
01|01 F=A-Bplus (A+B')plus CIN | F=B'
g i 1 2 £=:‘ mi;ljs |B mci;]/\L;S 1 plus CIN iz 2‘69 g: Figure 21: Logic symbol
=A+ B plus =A+ .
10|00 F=Aplus(A+B)plusCIN | F=A-B for the 74x181 4-bit ALU.
1{0]|0]|1 F=AplusBplus CIN F=A®B
1/0|1]|0 F=A-Bplus(A+B)plusCIN|F=B
1]0|1]|1 F=A+BplusCIN F=A+B
11010 F = A plus A plus CIN F = 0000
1]1]0|1 F=A-BplusAplus CIN F=A-B
1 1|10 F=A-B plus A plus CIN F=A-B
1]1]1]1 F = A plus CIN F=A

55 / 70

Adders, Subtractors, and ALUs: MSI ALUs

@ 74x381 (b) 74382
°1so °1'so
ls1 13 °ls1
Is2 oL Is2 owr|=
Plein Plo Plein couT |22
1 Ao Fo |2 31 o Fo |2
“IBo ‘180
a1 F1|2 = Y F1P2
2lB1 2By
19 A2 E2 11 19 A2 E2 11
18 B2 18 B2
17 A3 E3 12 17 A3 F3 12
16 B3 16 B3

Figure 22: Logic symbols for 4-bit ALUs: (a) 74x381; (b) 74x382.

56 / 70

Adders, Subtractors, and ALUs: MSI ALUs

Table 12: Functions performed by the 74x381 and 74x382 4-bit ALUs.

Inputs
S2 | S1]S0 Function
0|0 O F = 0000
001 F = B minus A minus 1 plus CIN
010 F = A minus B minus 1 plus CIN
0|11 F = A plus B plus CIN
11010 F=A@B
1101 F=A+8B
117110 F=A-B
1111 F=1111

57 / 70

Adders, Subtractors, and ALUs: MSI ALUs

@ '381 provides group-carry-lookahead outputs while '382 provides ripple
carry and overflow outputs

58 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ '181 and '381 provide group-carry-lookahead outputs that allow
multiple ALUs to be cascaded without rippling carries between 4-bit
groups

o Like 74x283, ALUs use carry lookahead to produce carries internally
o However, they also provide G_L and P_L outputs that are
carry-lookahead signals for entire 4-bit group

o G_L output is asserted if ALU produces a carry-out whether or not
there is a carry-in

G L= (g3+P3'g2+P3'P2'g1+p3-p2-p1-go)’
o P_L output is asserted if ALU produces a carry-out if there is a carry-in

P.L=(p3s-p2-p1-po)

59 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ When ALUs are cascaded, group-carry-lookahead outputs may be
combined in just two levels of logic to produce carry input to each

ALU
o A lookahead carry circuit performs this operation
74x182

B[
—20lco 12
_‘opo
—io 61, |u
—QlP1
ole2 0
DS PO
—0e3 G o=
—°olp3 Plo—

Figure 23: Logic symbol for the 74x182 lookahead carry circuit.

60 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

Gt
PALL
e
S[2:0]
Al15:0]
B[15:0]
Toan o
o ||l w0 || ol
EN .. E I Y
2, oproot] =l
L em plo - 2lem
L) S S e
% B0 Ll o
ool PO PR
C I o
2 -
E wl a2 e
P P
C T wl R e
2w i I
Ao =
o o
N o | oo
s st
: n : e
Eo [R E T P R
= R ERCTS
cN o Pl = on plo =
Pl P
P ol
. E
e e o
a1 9 s Har £ F13
.
o W w
o poR R [N o
o o
e P P
T) W e
I S I
A A

Figure 24: A 16-bit ALU using group-carry lookahead.

61/ 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ '182’s carry equations

o '182 realizes each of these equations with one level of delay—an
INVERT-OR-AND gate

Civ1 =g +pi-ci = (g +pi) (8 +ci)
C1= (G0 + PO) - (GO + CO)
C2=(G1+ P1)-(GL + GO+ PO)- (G1 + GO + CO)

C3=(G2+ P2)-(G2+ G1+ P1)-(G2+ G1+ GO + P0)
-(G2+ G1+ GO+ CO)

62 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ When more than four ALUs are cascaded, they may be partitioned into
"supergroups,” each with its own '182
o E.g., a 64-bit adder would have four supergroups, each containing four
ALUs and a '182
o G_L and P_L outputs of each '182 can be combined in a next-level '182,
since they indicate whether the supergroup generates or propagates
carries

G.L=((G3+P3)-(G3+ G2+ P2)-(G3+ G2+ G1+ P1)
-(G3+ G2+ G1+ GO))
P_.L=(PO-P1-P2-P3)

63 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

o Verilog has built-in addition (4) and subtraction (—) operators for bit
vectors

o Bit vectors are considered to be unsigned or two's-complement signed
numbers

o Actual addition or subtraction operation is exactly the same for either
interpretation of bit vectors

o Since exactly the same logic circuit is synthesized for either
interpretation, Verilog compiler does not need to know how we are
interpreting bit vectors

e Only handling of carry, borrow, and overflow conditions differs by
interpretation, and that is done separately from addition or subtraction
itself

64 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

Table 13: Verilog program with addition of both signed and unsigned numbers.

module Vradders(A, B, C, D, S, T, OVFL, COUT);
input [7:0] A, B, C, D;
output [7:0] S, T;
output OVFL, COUT;

// S and OVFL -- signed interpretation
assign 8 = A + B;
assign OVFL = (A[7]1==B[7]) && (S[7]1!=A[71);
// T and COUT -- unsigned interpretation
assign {COUT, T} = C + D;

endmodule

65 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

SEL SEL —

(@ ~~—_ (b)
A/ A —
2-input

B::)Hﬁl c—| ™ 1
° ::)} adder j = 2-input j

mux
D —) D —)
/
Figure 25: Two ways to synthesize a selectable addition:
selectable sum; (b) one adder with selectable inputs.

h

adder |—>S

/
!
ik

2\

a) two adders and a

66 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

o Addition and subtraction are expensive in terms of number of gates
required
o Most Verilog compilers attempt to reuse adder blocks whenever possible
@ Tab. 14 is a Verilog module that includes two different additions
o Fig. 25(a) shows a circuit that might be synthesized
o However, many compilers are smart enough to use approach (b)
o An n-bit 2-input multiplexer is smaller than an n-bit adder

Table 14: Verilog module that allows adder sharing.

module Vraddersh(SEL, A, B, C, D, 8);
input SEL;
input [7:0] A, B, C, D;
output [7:0] S;
reg [7:0] S;

always @ (SEL, A, B, C, D)
if (SEL) S = A + B;
else S =C + D;
endmodule

67 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

Table 15: Alternate version of Tab. 14, using a continuous-assignment
statement.

module Vraddersc(SEL, A, B, C, D, 8);
input SEL;
input [7:0] A, B, C, D;
output [7:0] S;

assign S = (SEL) ? A + B : C + D;
endmodule

o A typical compiler should synthesize the same circuit for either module
of Tab. 14 or 15

68 / 70

dders, Subtractors, and ALUs: Adders in Verilo

Table 16: An 8-bit 74x381-like ALU.

module Vr74x381(S, A, B, CIN, F, G_L, P_L);
input [2:0] S; 74x381
input [7:0] A, B;
input CIN; SO
S1

output [7:0] F; - :ﬁ
o—
8

o

o

~
[9)

output G_L, P_L;
reg [7:0] F; Slon P
reg G_L, P_L, GG, GP;
reg [7:0] G, P;
integer i;

w

A0 FO
BO
Al F1

IS

-
©

always @ (8 or A or B or CIN or G or P or GG or GP) begin
for (1 = 0; i <=7; i =1+ 1) begin B1
G[i] = A[i] & B[i); A2 F2
P[i] = Ali] | BIil; 8 gy
end 17 12
GG = G[0]; GP = P[0]; v B Fs
for (i =1; i <=7; i=1+ 1) begin B3
GG = G[i] | (GG & P[il);
GP = P[i] & GP;
end
G_L = "GG; P_L = "GP;
case (8) Inputs
3'd0: F —_—
3'dl: F
3'd2: F
3'd3: F
3'd4: F
F
F
F
t

N

i
©
-
s

|
-
+
Q
=]
=
%)
~
wn
-
%]
=3

Function

-

= 0000

F = B minus A minus 1 plus CIN
F = A minus B minus 1 plus CIN
F = A plus B plus CIN
F=As&B

F=A+B

F=A-B

F=1111

o+

3'd5:
3'dé:
3'd7:
default:
endcase
end
endmodule

1111115

o —
~
- = o e

o
S

L]
"
o
HOMRORORO

69 / 70

References

¥® Joun F. WAKERLY, Digital Design: Principles and Practices (4th
Edition), PRENTICE HALL, 2005.

70 / 70

