
Design of Digital Systems II
Combinational Logic Design Practices (3)

Moslem Amiri, Václav Přenosil
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Exclusive-OR and Exclusive-NOR Gates

An XOR gate is a 2-input gate whose output is 1 if its inputs are
different

X ⊕ Y = X ′ · Y + X · Y ′

An XNOR gate is a 2-input gate whose output is 1 if its inputs are the
same

Table 1: Truth table for XOR and XNOR functions.

X Y X ⊕ Y (X ⊕ Y )′

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1
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The logic symbols for XOR and XNOR functions are shown in Figure 5-71.
There are four equivalent symbols for each function. All of these alternatives are
a consequence of a simple rule:

• Any two signals (inputs or output) of an XOR or XNOR gate may be
complemented without changing the resulting logic function.

In bubble-to-bubble logic design, we choose the symbol that is most expressive
of the logic function being performed. 

Four XOR gates are provided in a single 14-pin SSI IC, the 74x86 shown in
Figure 5-72. New SSI logic families do not offer XNOR gates, although they are
readily available in FPGA and ASIC libraries and as primitives in HDLs. 
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Figure 1: Multigate designs for the 2-input XOR function: (a) AND-OR; (b)
three-level NAND.
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The logic symbols for XOR and XNOR functions are shown in Figure 5-71.
There are four equivalent symbols for each function. All of these alternatives are
a consequence of a simple rule:

• Any two signals (inputs or output) of an XOR or XNOR gate may be
complemented without changing the resulting logic function.

In bubble-to-bubble logic design, we choose the symbol that is most expressive
of the logic function being performed. 

Four XOR gates are provided in a single 14-pin SSI IC, the 74x86 shown in
Figure 5-72. New SSI logic families do not offer XNOR gates, although they are
readily available in FPGA and ASIC libraries and as primitives in HDLs. 
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Figure 2: Equivalent symbols for (a) XOR gates; (b) XNOR gates.

As seen in Fig. 2, any two signals (inputs or output) of an XOR or
XNOR gate may be complemented without changing resulting logic
function
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5.8.2 Parity Circuits
As shown in Figure 5-73(a), n XOR gates may be cascaded to form a circuit with
n + 1 inputs and a single output. This is called an odd-parity circuit, because its
output is 1 if an odd number of its inputs are 1. The circuit in (b) is also an odd-
parity circuit, but it’s faster because its gates are arranged in a tree-like structure.
If the output of either circuit is inverted, we get an even-parity circuit, whose
output is 1 if an even number of its inputs are 1.

5.8.3 The 74x280 9-Bit Parity Generator
Rather than build a multibit parity circuit with discrete XOR gates, it is more
economical to put all of the XORs in a single MSI package with just the primary
inputs and outputs available at the external pins. The 74x280 9-bit parity
generator, shown in Figure 5-74, is such a device. It has nine inputs and two
outputs that indicate whether an even or odd number of inputs are 1.

5.8.4 Parity-Checking Applications
In Section 2.15, we described error-detecting codes that use an extra bit, called
a parity bit, to detect errors in the transmission and storage of data. In an even-
parity code, the parity bit is chosen so that the total number of 1 bits in a code
word is even. Parity circuits like the 74x280 are used both to generate the correct
value of the parity bit when a code word is stored or transmitted, and to check
the parity bit when a code word is retrieved or received.
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Figure 3: Cascading XOR gates: (a) daisy-chain connection; (b) tree structure.
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Parity Circuits

Fig. 3
(a) is an odd-parity circuit

Its output is 1 if an odd number of its inputs are 1

(b) is also an odd-parity circuit, but it is faster
If output of either circuit is inverted, we get an even-parity circuit

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 6 / 70



Parity Circuits: The 74x280 9-Bit Parity Generator374 Chapter 5 Combinational Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Figure 5-75 shows how a parity circuit might be used to detect errors in the
memory of a microprocessor system. The memory stores 8-bit bytes, plus a
parity bit for each byte. The microprocessor uses a bidirectional bus D[0:7] to
transfer data to and from the memory. Two control lines, RD and WR, are used to
indicate whether a read or write operation is desired, and an ERROR signal is
asserted to indicate parity errors during read operations. Complete details of the
memory chips, such as addressing inputs, are not shown; memory chips are
described in detail in \chapref{MEMORY}.
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Figure 5-74 The 74x280 9-bit odd/even parity generator: (a) logic diagram, 
including pin numbers for a standard 16-pin dual in-line 
package; (b) traditional logic symbol.

SPEEDING UP THE
XOR TREE

If each XOR gate in Figure 5-74 were built using discrete NAND gates as in
Figure 5-70(b), the 74x280 would be pretty slow, having a propagation delay
equivalent to 4 ⋅ 3 + 1, or 13, NAND gates. Instead, a typical implementation of the
74x280 uses a 4-wide AND-OR-INVERT gate to perform the function of each shaded
pair of XOR gates in the figure with about the same delay as a single NAND gate. The
A–I inputs are buffered through two levels of inverters so that each input presents just
one unit load to the circuit driving it. Thus, the total propagation delay through this
implementation of the 74x280 is about the same as five inverting gates, not 13.

Figure 4: The 74x280 9-bit odd/even parity generator: (a) logic diagram,
including pin numbers for a standard 16-pin dual in-line package; (b) traditional
logic symbol.
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Parity Circuits: Parity-Checking Applications

A parity bit is used in error-detecting codes to detect errors in
transmission and storage of data

In an even-parity code, parity bit is chosen so that total number of 1
bits in a code word is even

Parity circuits like 74x280 are used both to generate correct value of
parity bit when a code word is stored or transmitted, and to check
parity bit when a code word is retrieved or received
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To store a byte into the memory chips, we specify an address (not shown),
place the byte on D[0–7], generate its parity bit on PIN, and assert WR. The AND
gate on the I input of the 74x280 ensures that I is 0 except during read operations,
so that during writes the ’280’s output depends only on the parity of the D-bus
data. The ’280’s ODD output is connected to PIN, so that the total number of 1s
stored is even.

To retrieve a byte, we specify an address (not shown) and assert RD; the
byte value appears on DOUT[0–7] and its parity appears on POUT. A 74x541
drives the byte onto the D bus, and the ’280 checks its parity. If the parity of the
9-bit word DOUT[0–7],POUT is odd during a read, the ERROR signal is
asserted.

Parity circuits are also used with error-correcting codes such as the
Hamming codes described in Section 2.15.3. We showed the parity-check
matrix for a 7-bit Hamming code in Figure 2-13 on page 59. We can correct
errors in this code as shown in Figure 5-76. A 7-bit word, possibly containing an
error, is presented on DU[1–7]. Three 74x280s compute the parity of the three
bit-groups defined by the parity-check matrix. The outputs of the ’280s form the
syndrome, which is the number of the erroneous input bit, if any. A 74x138 is
used to decode the syndrome. If the syndrome is zero, the NOERROR_L signal
is asserted (this signal also could be named ERROR). Otherwise, the erroneous
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Figure 5-75 Parity generation and checking for an 8-bit-wide memory system.Figure 5: Parity generation and checking for an 8-bit-wide memory.
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Parity Circuits: Parity-Checking Applications

In Fig. 5, to store a byte into memory

Specify an address
Place byte on D[0–7]
Generate its parity bit on PIN
Assert WR
’280’s ODD output is connected to PIN, so that total number of 1s
stored is even

In Fig. 5, to retrieve a byte

Specify an address
Assert RD
A 74x541 drives byte onto D bus, and ’280 checks its parity
If parity of 9-bit word is odd during a read, ERROR signal is asserted
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Exclusive-OR Gates and Parity Circuits in Verilog

Table 2: Dataflow-style Verilog module for a 3-input XOR device.
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Exclusive-OR Gates and Parity Circuits in Verilog

Table 3: Behavioral Verilog program for a 9-input parity checker.
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Figure 5-75 shows how a parity circuit might be used to detect errors in the
memory of a microprocessor system. The memory stores 8-bit bytes, plus a
parity bit for each byte. The microprocessor uses a bidirectional bus D[0:7] to
transfer data to and from the memory. Two control lines, RD and WR, are used to
indicate whether a read or write operation is desired, and an ERROR signal is
asserted to indicate parity errors during read operations. Complete details of the
memory chips, such as addressing inputs, are not shown; memory chips are
described in detail in \chapref{MEMORY}.
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Figure 5-74 The 74x280 9-bit odd/even parity generator: (a) logic diagram, 
including pin numbers for a standard 16-pin dual in-line 
package; (b) traditional logic symbol.

SPEEDING UP THE
XOR TREE

If each XOR gate in Figure 5-74 were built using discrete NAND gates as in
Figure 5-70(b), the 74x280 would be pretty slow, having a propagation delay
equivalent to 4 ⋅ 3 + 1, or 13, NAND gates. Instead, a typical implementation of the
74x280 uses a 4-wide AND-OR-INVERT gate to perform the function of each shaded
pair of XOR gates in the figure with about the same delay as a single NAND gate. The
A–I inputs are buffered through two levels of inverters so that each input presents just
one unit load to the circuit driving it. Thus, the total propagation delay through this
implementation of the 74x280 is about the same as five inverting gates, not 13.
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Exclusive-OR Gates and Parity Circuits in Verilog

ASIC and FPGA libraries contain two- and three-input XOR and
XNOR functions as primitives

In CMOS ASICs, these primitives are realized very efficiently at
transistor level using transmission gates
Fast and compact XOR trees can be built using these primitives
Typical Verilog synthesis tools are not smart enough to create an
efficient tree structure from a behavioral program like Tab. 3
Instead, we can use a structural program to get exactly what we want

Tab. 4
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Exclusive-OR Gates and Parity Circuits in Verilog

Table 4: Structural Verilog program for a 74x280-like parity checker.
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Figure 5-75 shows how a parity circuit might be used to detect errors in the
memory of a microprocessor system. The memory stores 8-bit bytes, plus a
parity bit for each byte. The microprocessor uses a bidirectional bus D[0:7] to
transfer data to and from the memory. Two control lines, RD and WR, are used to
indicate whether a read or write operation is desired, and an ERROR signal is
asserted to indicate parity errors during read operations. Complete details of the
memory chips, such as addressing inputs, are not shown; memory chips are
described in detail in \chapref{MEMORY}.
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Figure 5-74 The 74x280 9-bit odd/even parity generator: (a) logic diagram, 
including pin numbers for a standard 16-pin dual in-line 
package; (b) traditional logic symbol.

SPEEDING UP THE
XOR TREE

If each XOR gate in Figure 5-74 were built using discrete NAND gates as in
Figure 5-70(b), the 74x280 would be pretty slow, having a propagation delay
equivalent to 4 ⋅ 3 + 1, or 13, NAND gates. Instead, a typical implementation of the
74x280 uses a 4-wide AND-OR-INVERT gate to perform the function of each shaded
pair of XOR gates in the figure with about the same delay as a single NAND gate. The
A–I inputs are buffered through two levels of inverters so that each input presents just
one unit load to the circuit driving it. Thus, the total propagation delay through this
implementation of the 74x280 is about the same as five inverting gates, not 13.
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Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 14 / 70



Comparators

A comparator is a circuit that compares two binary words and
indicates whether they are equal

Magnitude comparators interpret their input words as signed or
unsigned numbers and also indicate an arithmetic relationship (greater
or less than) between words
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Comparators: Comparator Structure

XOR or XNOR gates may be viewed as 1-bit comparators

Figure 6: Comparators using XOR gates: (a) 1-bit comparator; (b) 4-bit
comparator.

We can build an n-bit comparator using n XOR gates and an n-input
OR gate
Wider OR functions can be obtained by cascading individual gates

A faster circuit is obtained by arranging gates in a tree-like structure
Using NORs and NANDs in place of ORs makes circuit even faster
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Comparators: Comparator Structure

Comparators can also be built using XNOR gates

A 2-input XNOR gate produces a 1 output if its two inputs are equal
A multibit comparator can be constructed using one XNOR gate per bit,
and ANDing all of their outputs together
Output of AND function is 1 if all of individual bits are pairwise equal

n-bit comparators in this subsection are called parallel comparators
They look at each pair of input bits simultaneously and deliver 1-bit
comparison results in parallel to an n-input OR or AND function
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Comparators: Iterative Circuits

An iterative circuit contains n identical modules, each of which has
both primary inputs and outputs and cascading inputs and outputs

Left-most cascading inputs are called boundary inputs and are
connected to fixed logic values
Right-most cascading outputs are called boundary outputs and usually
provide important information

382 Chapter 5 Combinational Logic Design Practices
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Examples of iterative circuits are the comparator circuit in the next subsec-
tion and the ripple adder in Section 5.10.2. The 74x85 4-bit comparator and the
74x283 4-bit adder are examples of MSI circuits that can be used as the individ-
ual modules in a larger iterative circuit. In \secref{itvsseq} we’ll explore the
relationship between iterative circuits and corresponding sequential circuits that
execute the 4-step algorithm above in discrete time steps.

5.9.3 An Iterative Comparator Circuit
Two n-bit values X and Y can be compared one bit at a time using a single

bit EQi at each step to keep track of whether all of the bit-pairs have been equal
so far:

1. Set EQ0 to 1 and set i to 0.

2. If EQi is 1 and Xi and Yi are equal, set EQi + 1 to 1. Else set EQi+1 to 0.

3. Increment i.

4. If i < n, go to step 2.

Figure 5-79 shows a corresponding iterative circuit. Note that this circuit has no
primary outputs; the boundary output is all that interests us. Other iterative cir-
cuits, such as the ripple adder of Section 5.10.2, have primary outputs of interest.

Given a choice between the iterative comparator circuit in this subsection
and one of the parallel comparators shown previously, you would probably
prefer the parallel comparator. The iterative comparator saves little if any cost,
and it’s very slow because the cascading signals need time to “ripple” from the
leftmost to the rightmost module. Iterative circuits that process more than one bit
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Figure 5-78 General structure of an iterative combinational circuit.Figure 7: General structure of an iterative combinational circuit.
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Comparators: Iterative Circuits

Iterative circuits are suited to problems that can be solved by an
iterative algorithm

1 Set C0 to its initial value and set i to 0
2 Use Ci and PIi to determine values of POi and Ci+1

3 Increment i
4 If i < n, go to step 2
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Comparators: An Iterative Comparator Circuit

To compare two n-bit values X and Y
1 Set EQ0 to 1 and set i to 0
2 If EQi is 1 and Xi and Yi are equal, set EQi+1 to 1, else set EQi+1 to 0
3 Increment i
4 If i < n, go to step 2 Section 5.9 Comparators 383
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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Figure 5-80
Traditional logic symbol for 
the 74x85 4-bit comparator.

cascading inputs

Figure 8: An iterative comparator circuit: (a) module for one bit; (b) complete
circuit.
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Comparators: An Iterative Comparator Circuit

Parallel comparators are preferred over iterative ones
Iterative comparators are very slow

Cascading signals need time to ”ripple” from leftmost to rightmost
module

Iterative circuits that process more than one bit at a time (using
modules like 74x85, discussed next) are much more likely to be used in
practical designs
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Comparators: Standard MSI Magnitude Comparators

74x85 is a 4-bit comparator which provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal
output (AEQBOUT)

’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN) for
combining multiple ’85s to create comparators for more than four bits

Section 5.9 Comparators 383
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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Figure 9: Traditional logic symbol for the 74x85 4-bit comparator.
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significant bits, as shown in Figure 5-81 for a 12-bit comparator. This is an iter-
ative circuit according to the definition in Section 5.9.2. Each ’85 develops its
cascading outputs roughly according to the following pseudo-logic equations: 

The parenthesized subexpressions above are not normal logic expressions, but
indicate an arithmetic comparison that occurs between the A3–A0 and B3–B0
inputs. In other words, AGTBOUT is asserted if A > B or if A = B and AGTBIN
is asserted (if the higher-order bits are equal, we have to look at the lower-order
bits for the answer). We’ll see this kind of expression again when we look at
ABEL comparator design in Section 5.9.5. The arithmetic comparisons can be
expressed using normal logic expressions, for example, 

Such expressions must be substituted into the pseudo-logic equations above to
obtain genuine logic equations for the comparator outputs.

Several 8-bit MSI comparators are also available. The simplest of these is
the 74x682, whose logic symbol is shown in Figure 5-82 and whose internal

AGTBOUT = (A > B) + (A = B) ⋅ AGTBIN

AEQBOUT = (A = B) ⋅ AEQBIN

ALTBOUT = (A < B) + (A = B) ⋅ ALTBIN

(A > B) = A3 ⋅ B3′+
 (A3 ⊕ B3)′ ⋅ A2 ⋅ B2′ +
 (A3 ⊕ B3)′ ⋅ (A2 ⊕ B2)′ ⋅ A1 ⋅ B1′ +
 (A3 ⊕ B3)′ ⋅ (A2 ⊕ B2)′ ⋅ (A1 ⊕ B1)′ ⋅ A0 ⋅ B0′
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Figure 5-81 A 12-bit comparator using 74x85s.
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Figure 10: A 12-bit comparator using 74x85s.
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Cascading inputs are defined so outputs of an ’85 that compares
less-significant bits are connected to inputs of an ’85 that compares
more-significant bits

For each ’85

AGTBOUT = (A > B) + (A = B) · AGTBIN
AEQBOUT = (A = B) · AEQBIN
ALTBOUT = (A < B) + (A = B) · ALTBIN

Arithmetic comparisons can be expressed using normal logic
expressions, e.g.,

(A > B) = A3 · B3′+

(A3⊕ B3)′ · A2 · B2′+

(A3⊕ B3)′ · (A2⊕ B2)′ · A1 · B1′+

(A3⊕ B3)′ · (A2⊕ B2)′ · (A1⊕ B1)′ · A0 · B0′
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significant bits, as shown in Figure 5-81 for a 12-bit comparator. This is an iter-
ative circuit according to the definition in Section 5.9.2. Each ’85 develops its
cascading outputs roughly according to the following pseudo-logic equations: 

The parenthesized subexpressions above are not normal logic expressions, but
indicate an arithmetic comparison that occurs between the A3–A0 and B3–B0
inputs. In other words, AGTBOUT is asserted if A > B or if A = B and AGTBIN
is asserted (if the higher-order bits are equal, we have to look at the lower-order
bits for the answer). We’ll see this kind of expression again when we look at
ABEL comparator design in Section 5.9.5. The arithmetic comparisons can be
expressed using normal logic expressions, for example, 

Such expressions must be substituted into the pseudo-logic equations above to
obtain genuine logic equations for the comparator outputs.

Several 8-bit MSI comparators are also available. The simplest of these is
the 74x682, whose logic symbol is shown in Figure 5-82 and whose internal

AGTBOUT = (A > B) + (A = B) ⋅ AGTBIN

AEQBOUT = (A = B) ⋅ AEQBIN

ALTBOUT = (A < B) + (A = B) ⋅ ALTBIN

(A > B) = A3 ⋅ B3′+
 (A3 ⊕ B3)′ ⋅ A2 ⋅ B2′ +
 (A3 ⊕ B3)′ ⋅ (A2 ⊕ B2)′ ⋅ A1 ⋅ B1′ +
 (A3 ⊕ B3)′ ⋅ (A2 ⊕ B2)′ ⋅ (A1 ⊕ B1)′ ⋅ A0 ⋅ B0′
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Figure 5-81 A 12-bit comparator using 74x85s.
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Figure 11: Traditional logic symbol for the 74x682 8-bit comparator.
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In Fig. 12
Top half of circuit checks two 8-bit input words for equality

PEQQ L output is asserted if all eight input-bit pairs are equal

Bottom half of circuit compares input words arithmetically

PGTQ L is asserted if P[7–0] > Q[7–0]

74x682 does not have cascading inputs and a ”less than” output

However, any desired condition can be formulated as a function of
PEQQ L and PGTQ L outputs
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logic diagram is shown in Figure 5-83. The top half of the circuit checks the two
8-bit input words for equality. Each XNOR-gate output is asserted if its inputs
are equal, and the PEQQ_L output is asserted if all eight input-bit pairs are equal.
The bottom half of the circuit compares the input words arithmetically, and
asserts /PGTQ if P[7–0] > Q[7–0].

Unlike the 74x85, the 74x682 does not have cascading inputs. Also unlike
the ’85, the ’682 does not provide a “less than” output. However, any desired
condition, including ≤ and ≥, can be formulated as a function of the PEQQ_L
and PGTQ_L outputs, as shown in Figure 5-84. 

5.9.5 Comparators in ABEL and PLDs
Comparing two sets for equality or inequality is very easy to do in ABEL using
the “==” or “!=” operator in a relational expression. The only restriction is that
the two sets must have an equal number of elements. Thus, given the relational
expression “A!=B” where A and B are sets each with n elements, the compiler
generates the logic expression

(A1 $ B1)  # (A2 $ B2)  # ... # (An $ Bn)

The logic expression for “A==B”is just the complement of the one above. 
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Figure 5-84
Arithmetic conditions 
derived from 74x682 
outputs.

COMPARING
COMPARATORS

The individual 1-bit comparators (XNOR gates) in the ’682 are drawn in the opposite
sense as the examples of the preceding subsection—outputs are asserted for equal
inputs and then ANDed, rather than asserted for different inputs and then ORed. We
can look at a comparator’s function either way, as long as we’re consistent.

Figure 13: Arithmetic conditions derived from 74x682 outputs.
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Comparators in HDLs

Comparing two bit-vectors for equality or inequality is done in an HDL
program, in relational expressions using operators such as ”==” and
”!=”

Given relational expression ”(A==B)”, where A and B are bit vectors
each with n elements, compiler generates the logic expression

((A1 ⊕ B1) + (A2 ⊕ B2) + · · ·+ (An ⊕ Bn))′

In a PLD, this is realized as a complemented sum of 2n product terms

((A1 · B ′1 + A′1 · B1) + (A2 · B ′2 + A′2 · B2) + · · ·+ (An · B ′n + A′n · Bn))′

Logic expression for ”(A!=B)” is complement of the ones above
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Comparators in HDLs

Given relational expression ”(A<B)”, where A and B are bit vectors each
with n elements, HDL compiler first builds n equations of the form

Li = (A′i · (Bi + Li−1)) + (Ai · Bi · Li−1)

for i = 1 to n, and L0 = 0

This is an iterative definition of less-than function, starting with LSB
Logic equation for ”(A<B)” is the equation for Ln
After creating n equations, HDL compiler collapses them into a single
equation for Ln involving only A and B

In case of a compiler that is targeting a PLD, final step is to derive a
minimal sum-of-products expression from Ln equation
Collapsing an iterative circuit into a two-level sum-of-products
realization creates an exponential expansion of product terms

Requires 2n − 1 product terms for an n-bit comparator

Results for ”>” comparators are identical
Logic expressions for ”>=” and ”<=” are complements of expressions for
”<” and ”>”
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Comparators in Verilog

Verilog has built-in comparison operators: >, >=, <, <=, ==, !=

These operators can be applied to bit vectors
Bit vectors are interpreted as unsigned numbers with the MSB on left,
regardless of how they are numbered
Verilog-2001 also supports signed arithmetic
Verilog matches up operands of different lengths, by adding zeros on left
Equality and inequality checkers are small and fast

Built from n XOR or XNOR gates and an n-input AND or OR gate

Checking for greater-than or less-than

The number of product terms needed for an n-bit comparator grows
exponentially, on order of 2n, when comparator is realized as a two-level
sum of products
A two-level sum-of-products realization is possible only for small values
of n (4 or less)
For larger values of n, compiler may synthesize a set of smaller
comparator modules, along the lines of 74x85 and 74x682 parts, whose
outputs may be cascaded or combined to create larger comparison result
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Comparators in Verilog

Table 5: Verilog module with functionality similar to 74x85 magnitude
comparator.

Section 5.9 Comparators 383
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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An iterative 
comparator circuit: 
(a) module for one bit;
(b) complete circuit.
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Figure 5-80
Traditional logic symbol for 
the 74x85 4-bit comparator.

cascading inputs

Module of Tab. 5 does not perform an explicit check for A<B, to avoid
synthesizing another comparator

If we missed this optimization and included A<B check, it is necessary
also to include a final else statement (Tab. 6)
Without final else clause, compiler will infer a latch to hold previous
value of each cascading output if none of logic paths through always

block assigned a value to that output
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Comparators in Verilog

Table 6: Verilog comparator module with three explicit comparisons.
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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An iterative 
comparator circuit: 
(a) module for one bit;
(b) complete circuit.
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Figure 5-80
Traditional logic symbol for 
the 74x85 4-bit comparator.

cascading inputs
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Table 7: Verilog comparator module with cascading from more to less
significant stages.
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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An iterative 
comparator circuit: 
(a) module for one bit;
(b) complete circuit.
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Figure 5-80
Traditional logic symbol for 
the 74x85 4-bit comparator.

cascading inputs

With a series of if-else statements, compiler synthesizes priority logic

It checks the first condition, and only then the second, and so on
We can use a case statement instead
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Table 8: Verilog comparator module using a case statement.
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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An iterative 
comparator circuit: 
(a) module for one bit;
(b) complete circuit.
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Figure 5-80
Traditional logic symbol for 
the 74x85 4-bit comparator.

cascading inputs
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Comparators in Verilog

Table 9: Verilog comparator module using continuous assignments.
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at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit adder,
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI comparators
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. Both
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, since in
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that compares
less-significant bits are connected to the inputs of an ’85 that compares more-
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Figure 5-79
An iterative 
comparator circuit: 
(a) module for one bit;
(b) complete circuit.
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Adders, Subtractors, and ALUs

The same addition rules and therefore the same adders are used for
both unsigned and two’s-complement numbers

An adder can perform subtraction as addition of minuend and
complemented subtrahend

But we can also build subtractor circuits that perform subtraction
directly

ALUs perform addition, subtraction, or any of several other operations
according to an operation code supplied to device
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Adders, Subtractors, and ALUs: Half Adders & Full Adders

A half adder adds two 1-bit operands X and Y, producing a 2-bit sum

HS = X ⊕ Y

= X · Y ′ + X ′ · Y
CO = X · Y

(HS = half sum, and CO = carry-out)

To add operands with more than one bit, we must provide for carries
between bit positions

Building block for this operation is called a full adder

S = X ⊕ Y ⊕ CIN

= X · Y ′ · CIN ′ + X ′ · Y · CIN ′ + X ′ · Y ′ · CIN + X · Y · CIN
COUT = X · Y + X · CIN + Y · CIN
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Adders, Subtractors, and ALUs: Half Adders & Full Adders
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circuits that perform subtraction directly. MSI devices called ALUs, described
in Section 5.10.6, perform addition, subtraction, or any of several other opera-
tions according to an operation code supplied to the device.

*5.10.1 Half Adders and Full Adders
The simplest adder, called a half adder, adds two 1-bit operands X and Y,
producing a 2-bit sum. The sum can range from 0 to 2, which requires two bits
to express. The low-order bit of the sum may be named HS (half sum), and the
high-order bit may be named CO (carry out). We can write the following
equations for HS and CO:

To add operands with more than one bit, we must provide for carries
between bit positions. The building block for this operation is called a full adder.
Besides the addend-bit inputs X and Y, a full adder has a carry-bit input, CIN. The
sum of the three inputs can range from 0 to 3, which can still be expressed with
just two output bits, S and COUT, having the following equations:

Here, S is 1 if an odd number of the inputs are 1, and COUT is 1 if two or more
of the inputs are 1. These equations represent the same operation that was
specified by the binary addition table in Table 2-3 on page 28.

One possible circuit that performs the full-adder equations is shown in
Figure 5-85(a). The corresponding logic symbol is shown in (b). Sometimes the
symbol is drawn as shown in (c), so that cascaded full adders can be drawn more
neatly, as in the next subsection.

HS = X ⊕ Y

= X ⋅ Y′ + X′ ⋅ Y
CO = X ⋅ Y

S = X ⊕ Y ⊕ CIN

= X ⋅ Y′ ⋅ CIN′ + X′ ⋅ Y ⋅ CIN′ + X′ ⋅ Y′ ⋅ CIN + X ⋅ Y ⋅ CIN

COUT = X ⋅ Y + X ⋅ CIN + Y ⋅ CIN

half adder

full adder

(a)

(b)

X

Y

CIN

S

COUT

X

Y

CIN

S

COUT

full adder

(c)

COUT CIN

X

S

Y

Figure 5-85
Full adder: (a) gate-
level circuit diagram; 
(b) logic symbol; 
(c) alternate logic 
symbol suitable for 
cascading.

Figure 14: Full adder: (a) gate-level circuit diagram; (b) logic symbol; (c)
alternate logic symbol suitable for cascading.
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Adders, Subtractors, and ALUs: Ripple Adders

A ripple adder is a cascade of n full-adder stages, each of which
handles one bit, to add two n-bit binary words

392 Chapter 5 Combinational Logic Design Practices
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*5.10.2 Ripple Adders
Two binary words, each with n bits, can be added using a ripple adder—a
cascade of n full-adder stages, each of which handles one bit. Figure 5-86 shows
the circuit for a 4-bit ripple adder. The carry input to the least significant bit (c0)
is normally set to 0, and the carry output of each full adder is connected to the
carry input of the next most significant full adder. The ripple adder is a classic
example of an iterative circuit as defined in Section 5.9.2.

A ripple adder is slow, since in the worst case a carry must propagate from
the least significant full adder to the most significant one. This occurs if, for
example, one addend is 11 … 11 and the other is 00 … 01. Assuming that all of
the addend bits are presented simultaneously, the total worst-case delay is 

where tXYCout is the delay from X or Y to COUT in the least significant stage,
tCinCout is the delay from CIN to COUT in the middle stages, and tCinS is the delay
from CIN to S in the most significant stage.

A faster adder can be built by obtaining each sum output si with just two
levels of logic. This can be accomplished by writing an equation for si in terms
of x0–xi, y0–yi, and c0, “multiplying out” or “adding out” to obtain a sum-of-
products or product-of-sums expression, and building the corresponding AND-
OR or OR-AND circuit. Unfortunately, beyond s2, the resulting expressions have
too many terms, requiring too many first-level gates and more inputs than
typically possible on the second-level gate. For example, even assuming that c0
= 0, a two-level AND-OR circuit for s2 requires fourteen 4-input ANDs, four
5-input ANDs, and an 18-input OR gate; higher-order sum bits are even worse.
Nevertheless, it is possible to build adders with just a few levels of delay using a
more reasonable number of gates, as we’ll see in Section 5.10.4.

*5.10.3 Subtractors
A binary subtraction operation analogous to binary addition was also specified
in Table 2-3 on page 28. A full subtractor handles one bit of the binary subtrac-
tion algorithm, having input bits X (minuend), Y (subtrahend), and BIN (borrow

tADD = tXYCout + (n − 2) ⋅  tCinCout + tCinS

ripple adder

SSS

COUT CIN

X

S

Y

COUT CIN

X Y

COUT CIN

X Y

COUT CIN

X Y

x2 y2 x1 y1 x0 y0

c3
c4

c2 c1

x3 y3

c0

s2 s1 s0s3

full subtractor

Figure 15: A 4-bit ripple adder.

c0 is normally set to 0
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Adders, Subtractors, and ALUs: Ripple Adders

A ripple adder is slow

In worst case, a carry must propagate from least significant full adder to
most significant one
E.g., adding 11 . . . 11 and 00 . . . 01
Total worst-case delay

tADD = tXYCout + (n − 2) · tCinCout + tCinS

tXYCout : delay from X or Y to COUT in least significant stage
tCinCout : delay from CIN to COUT in middle stages
tCinS : delay from CIN to S in most significant stage
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Adders, Subtractors, and ALUs: Subtractors

Binary subtraction is performed similar to binary addition, but using
borrows (bin and bout) between steps, and producing a difference bit d
When subtracting y from x

x ≥ y + bin −→ bout = 0
x < y + bin −→ bout = 1
d = x − y − bin + 2bout

Table 10: Binary subtraction table.

bin x y bout d

0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 0 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1
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Adders, Subtractors, and ALUs: Subtractors

Logic equations for a full subtractor

D = X ⊕ Y ⊕ BIN
BOUT = X ′ · Y + X ′ · BIN + Y · BIN

Manipulating logic equations above

BOUT = X ′ · Y + X ′ · BIN + Y · BIN
BOUT ′ = (X + Y ′) · (X + BIN ′) · (Y ′ + BIN ′)

= X · Y ′ + X · BIN ′ + Y ′ · BIN ′

D = X ⊕ Y ⊕ BIN

= X ⊕ Y ′ ⊕ BIN ′

Comparing with equations for a full adder, we can build a full
subtractor from a full adder

Any n-bit adder circuit can be made to function as a subtractor by
complementing subtrahend and treating carry-in and carry-out signals as
borrows with opposite active level
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*5.10.4 Carry Lookahead Adders
The logic equation for sum bit i of a binary adder can actually be written quite
simply:

More complexity is introduced when we expand ci above in terms of x0 – xi−1,
y0 – yi−1, and c0, and we get a real mess expanding the XORs. However, if we’re
willing to forego the XOR expansion, we can at least streamline the design of ci
logic using ideas of carry lookahead discussed in this subsection.

Figure 5-88 shows the basic idea. The block labeled “Carry Lookahead
Logic” calculates ci in a fixed, small number of logic levels for any reasonable
value of i. Two definitions are the key to carry lookahead logic: 

• For a particular combination of inputs xi and yi, adder stage i is said to
generate a carry if it produces a carry-out of 1 (ci+1 = 1) independent of the
inputs on x0 – xi−1, y0 – yi−1, and c0. 

• For a particular combination of inputs xi and yi, adder stage i is said to
propagate carries if it produces a carry-out of 1 (ci+1 = 1) in the presence
of an input combination of x0 – xi−1, y0 – yi−1, and c0 that causes a carry-in
of 1 (ci = 1).

si = xi ⊕ yi ⊕ ci
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Figure 5-87 Designing subtractors using adders: (a) full adder; (b) full subtractor; 
(c) interpreting the device in (a) as a full subtractor; (d) ripple subtractor.

carry lookahead

carry generate

carry propagate

Figure 16: Subtractor design using adders: (a) full adder; (b) full subtractor;
(c) interpreting 74x999 as a full subtractor; (d) ripple subtractor.
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Adders, Subtractors, and ALUs: Carry-Lookahead Adders

A faster adder than ripple can be built by obtaining each sum output
si = xi ⊕ yi ⊕ ci with just two levels of logic

This can be accomplished by expanding ci in terms of x0 − xi−1,
y0 − yi−1, and c0

More complexity is introduced by expanding XORs
We can keep XORs and design ci logic using ideas of carry lookahead
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Corresponding to these definitions, we can write logic equations for a carry-
generate signal, gi, and a carry-propagate signal, pi, for each stage of a carry loo-
kahead adder:

That is, a stage unconditionally generates a carry if both of its addend bits are 1,
and it propagates carries if at least one of its addend bits is 1. The carry output
of a stage can now be written in terms of the generate and propagate signals:

To eliminate carry ripple, we recursively expand the ci term for each stage, and
multiply out to obtain a 2-level AND-OR expression. Using this technique, we
can obtain the following carry equations for the first four adder stages:

Each equation corresponds to a circuit with just three levels of delay—one for
the generate and propagate signals, and two for the sum-of-products shown. A
carry lookahead adder uses three-level equations such as these in each adder
stage for the block labeled “carry lookahead” in Figure 5-88. The sum output for

gi = xi ⋅ yi

pi = xi + yi

ci+1 = gi + pi ⋅ ci

c1 = g0 + p0 ⋅ c0

c2 = g1 + p1 ⋅ c1

= g1 + p1 ⋅ (g0 + p0 ⋅ c0)

= g1 + p1 ⋅ g0 + p1 ⋅ p0 ⋅ c0

c3 = g2 + p2 ⋅ c2

= g2 + p2 ⋅ (g1 + p1 ⋅ g0 + p1 ⋅ p0 ⋅ c0)

= g2 + p2 ⋅ g1 + p2 ⋅ p1 ⋅ g0 + p2 ⋅ p1 ⋅ p0 ⋅ c0

c4 = g3 + p3 ⋅ c3

= g3 + p3 ⋅ (g2 + p2 ⋅ g1 + p2 ⋅ p1 ⋅ g0 + p2 ⋅ p1 ⋅ p0 ⋅ c0)

= g3 + p3 ⋅ g2 + p3 ⋅ p2 ⋅ g1 + p3 ⋅ p2 ⋅ p1 ⋅ g0 + p3 ⋅ p2 ⋅ p1 ⋅ p0 ⋅ c0 

Carry
Lookahead

Logic

hsi

ci

x i

yi si

x0

yi–1

x i−1

y0

c0

Figure 5-88
Structure of one 
stage of a carry 
lookahead adder.

carry lookahead adder

Figure 17: Structure of one stage of a carry-lookahead adder.
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Adders, Subtractors, and ALUs: Carry-Lookahead Adders

Adder stage i is said to generate a carry if it produces a ci+1 = 1
independent of inputs on x0 − xi−1, y0 − yi−1, and c0

This happens when both of addend bits of that stage are 1

gi = xi · yi
Adder stage i is said to propagate carries if it produces a ci+1 = 1 in
presence of an input combination of x0 − xi−1, y0 − yi−1, and c0 that
causes a ci = 1

This happens when at least one of addend bits of that stage is 1

pi = xi + yi

Carry output of a stage can be written as

ci+1 = gi + pi · ci
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Adders, Subtractors, and ALUs: Carry-Lookahead Adders

To eliminate carry ripple, we recursively expand ci term for each stage
and multiply out to obtain a two-level AND-OR expression

c1 = g0 + p0 · c0

c2 = g1 + p1 · c1

= g1 + p1 · (g0 + p0 · c0)

= g1 + p1 · g0 + p1 · p0 · c0

c3 = g2 + p2 · c2

= g2 + p2 · (g1 + p1 · g0 + p1 · p0 · c0)

= g2 + p2 · g1 + p2 · p1 · g0 + p2 · p1 · p0 · c0

c4 = g3 + p3 · c3

= g3 + p3 · (g2 + p2 · g1 + p2 · p1 · g0 + p2 · p1 · p0 · c0)

= g3 + p3 · g2 + p3 · p2 · g1 + p3 · p2 · p1 · g0 + p3 · p2 · p1 · p0 · c0

Hence, ”Carry Lookahead Logic” in Fig. 17 has three levels of delay;
one for generate and propagate signals, and two for SOPs shown
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74x283 uses carry-lookahead technique

396 Chapter 5 Combinational Logic Design Practices
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a stage is produced by combining the carry bit with the two addend bits for the
stage as we showed in the figure. In the next subsection, we’ll study some
commercial MSI adders and ALUs that use carry lookahead. 

*5.10.5 MSI Adders
The 74x283 is a 4-bit binary adder that forms its sum and carry outputs with just
a few levels of logic, using the carry lookahead technique. Figure 5-89 is a logic
symbol for the 74x283. The older 74x83 is identical except for its pinout, which
has nonstandard locations for power and ground.

The logic diagram for the ’283, shown in Figure 5-90, has just a few differ-
ences from the general carry-lookahead design that we described in the
preceding subsection. First of all, its addends are named A and B instead of X and
Y; no big deal. Second, it produces active-low versions of the carry-generate (gi ′)
and carry-propagate (pi ′) signals, since inverting gates are generally faster than
noninverting ones. Third, it takes advantage of the fact that we can algebraically
manipulate the half-sum equation as follows:

Thus, an AND gate with an inverted input can be used instead of an XOR gate to
create each half-sum bit.

Finally, the ’283 creates the carry signals using an INVERT-OR-AND
structure (the DeMorgan equivalent of an AND-OR-INVERT), which has about
the same delay as a single CMOS or TTL inverting gate. This requires some
explaining, since the carry equations that we derived in the preceding subsection
are used in a slightly modified form. In particular, the ci+1 equation uses the term
pi ⋅ gi instead of gi. This has no effect on the output, since pi is always 1 when gi
is 1. However, it allows the equation to be factored as follows:

This leads to the following carry equations, which are used by the circuit : 

hsi = xi ⊕ yi

= xi ⋅ yi′ + xi′ ⋅ yi

= xi ⋅ yi′ + xi ⋅ xi′ + xi′ ⋅ yi + yi ⋅ yi′
= (xi + yi) ⋅ (xi′ + yi′)
= (xi + yi) ⋅ (xi ⋅ yi)′
= pi ⋅ gi′ 

ci+1 = pi ⋅ gi + pi ⋅ ci

= pi ⋅ (gi + ci)

c1 = p0 ⋅ (g0 + c0)

c2 = p1 ⋅ (g1 + c1)

= p1 ⋅ (g1 + p0 ⋅ (g0 + c0))

= p1 ⋅ (g1 + p0) ⋅ (g1 + g0 + c0)
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Figure 5-89
Traditional logic 
symbol for the 
74x283 4-bit 
binary adder.

74x83

Figure 18: Traditional logic symbol for the 74x283 4-bit binary adder.
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74x283

It produces g ′i and p′i , since inverting gates are faster
Manipulating half-sum equation

hsi = xi ⊕ yi

= xi · y ′i + x ′i · yi
= xi · y ′i + xi · x ′i + x ′i · yi + yi · y ′i
= (xi + yi ) · (x ′i + y ′i )

= (xi + yi ) · (xi · yi )′

= pi · g ′i

Thus, an AND gate with an inverted input is used instead of an XOR
gate to create each half-sum bit
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Adders, Subtractors, and ALUs: MSI Adders

74x283
It creates carry signals using an INVERT-OR-AND structure (≡
AND-OR-INVERT), which has same delay as a single inverting gate

ci+1 = gi + pi · ci = pi · gi + pi · ci = pi · (gi + ci )
(pi is always 1 when gi is 1)

c1 = p0 · (g0 + c0)

c2 = p1 · (g1 + c1)

= p1 · (g1 + p0 · (g0 + c0))

= p1 · (g1 + p0) · (g1 + g0 + c0)

c3 = p2 · (g2 + c2)

= p2 · (g2 + p1 · (g1 + p0) · (g1 + g0 + c0))

= p2 · (g2 + p1) · (g2 + g1 + p0) · (g2 + g1 + g0 + c0)

c4 = p3 · (g3 + c3)

= p3 · (g3 + p2 · (g2 + p1) · (g2 + g1 + p0) · (g2 + g1 + g0 + c0))

= p3 · (g3 + p2) · (g3 + g2 + p1) · (g3 + g2 + g1 + p0)

· (g3 + g2 + g1 + g0 + c0)
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Figure 19: Logic diagram for the 74x283 4-bit binary adder.
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Propagation delay from C0 input to C4 output of ’283 is very short,
same as two inverting gates

As a result, fast group-ripple adders with more than four bits can be
made by cascading carry outputs and inputs of ’283s
Total propagation delay from C0 to C16 in Fig. 20 is same as that of
eight inverting gates
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If you’ve followed the derivation of these equations and can obtain the same
ones by reading the ’283 logic diagram, then congratulations, you’re up to speed
on switching algebra! If not, you may want to review Sections 4.1 and 4.2. 

The propagation delay from the C0 input to the C4 output of the ’283 is
very short, about the same as two inverting gates. As a result, fairly fast group-
ripple adders with more than four bits can be made simply by cascading the
carry outputs and inputs of ’283s, as shown in Figure 5-91 for a 16-bit adder.
The total propagation delay from C0 to C16 in this circuit is about the same as
that of eight inverting gates.

c3 = p2 ⋅ (g2 + c2)

= p2 ⋅ (g2 + p1 ⋅ (g1 + p0) ⋅ (g1 + g0 + c0))

= p2 ⋅ (g2 + p1) ⋅ (g2 + g1 + p0) ⋅ (g2 + g1 + g0 + c0)

c4 = p3 ⋅ (g3 + c3)

= p3 ⋅ (g3 + p2 ⋅ (g2 + p1) ⋅ (g2 + g1 + p0) ⋅ (g2 + g1 + g0 + c0))

= p3 ⋅ (g3 + p2) ⋅ (g3 + g2 + p1) ⋅ (g3 + g2 + g1 + p0) ⋅ (g3 + g2 + g1 + g0 + c0)
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Figure 20: A 16-bit group-ripple adder.
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An arithmetic and logic unit (ALU) is a combinational circuit that can
perform any of a number of different arithmetic and logical operations
on a pair of b-bit operands

The operation to be performed is specified by a set of function-select
inputs
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Table 11: Functions performed by the 74x181
4-bit ALU.

Inputs Function

S3 S2 S1 S0 M = 0 (arithmetic) M = 1 (logic)

0 0 0 0 F = A minus 1 plus CIN F = A′

0 0 0 1 F = A · B minus 1 plus CIN F = A′ + B ′

0 0 1 0 F = A · B ′ minus 1 plus CIN F = A′ + B
0 0 1 1 F = 1111 plus CIN F = 1111
0 1 0 0 F = A plus (A + B ′) plus CIN F = A′ · B ′
0 1 0 1 F = A · B plus (A + B ′) plus CIN F = B ′

0 1 1 0 F = A minus B minus 1 plus CIN F = A⊕ B ′

0 1 1 1 F = A + B ′ plus CIN F = A + B ′

1 0 0 0 F = A plus (A + B) plus CIN F = A′ · B
1 0 0 1 F = A plus B plus CIN F = A⊕ B
1 0 1 0 F = A · B ′ plus (A + B) plus CIN F = B
1 0 1 1 F = A + B plus CIN F = A + B
1 1 0 0 F = A plus A plus CIN F = 0000
1 1 0 1 F = A · B plus A plus CIN F = A · B ′
1 1 1 0 F = A · B ′ plus A plus CIN F = A · B
1 1 1 1 F = A plus CIN F = A
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*5.10.6 MSI Arithmetic and Logic Units
An arithmetic and logic unit (ALU) is a combinational circuit that can perform
any of a number of different arithmetic and logical operations on a pair of b-bit
operands. The operation to be performed is specified by a set of function-select
inputs. Typical MSI ALUs have 4-bit operands and three to five function select
inputs, allowing up to 32 different functions to be performed.

Figure 5-92 is a logic symbol for the 74x181 4-bit ALU. The operation
performed by the ’181 is selected by the M and S3–S0 inputs, as detailed in
Table 5-51. Note that the identifiers A, B, and F in the table refer to the 4-bit
words A3–A0, B3–B0, and F3–F0; and the symbols ⋅ and + refer to logical AND
and OR operations.

The 181’s M input selects between arithmetic and logical operations. When
M = 1, logical operations are selected, and each output Fi is a function only of the
corresponding data inputs, Ai and Bi. No carries propagate between stages, and
the CIN input is ignored. The S3–S0 inputs select a particular logical operation;
any of the 16 different combinational logic functions on two variables may be
selected. 

Ta b l e  5 - 5 1 Functions performed by the 74x181 4-bit ALU.

Inputs Function

S3 S2 S1 S0 M = 0 (arithmetic) M = 1 (logic)

0 0 0 0 F = A minus 1 plus CIN F = A′ 

0 0 0 1 F = A ⋅ B minus 1 plus CIN F = A′ + B′
0 0 1 0 F = A ⋅ B′ minus 1 plus CIN F = A′ + B 

0 0 1 1 F = 1111 plus CIN F = 1111

0 1 0 0 F = A plus (A + B′) plus CIN F = A′ ⋅ B′ 
0 1 0 1 F = A ⋅ B plus (A + B′) plus CIN F = B′
0 1 1 0 F = A minus B minus 1 plus CIN F = A ⊕ B′ 

0 1 1 1 F = A + B′ plus CIN F = A + B′ 
1 0 0 0 F = A plus (A + B) plus CIN F = A′ ⋅ B 

1 0 0 1 F = A plus B plus CIN F = A ⊕ B 

1 0 1 0 F = A ⋅ B′ plus (A + B) plus CIN F = B 

1 0 1 1 F = A + B plus CIN F = A + B 

1 1 0 0 F = A plus A plus CIN F = 0000

1 1 0 1 F = A ⋅ B plus A plus CIN F = A ⋅ B′ 
1 1 1 0 F = A ⋅ B′ plus A plus CIN F = A ⋅ B 

1 1 1 1 F = A plus CIN F = A
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Logic symbol for the 
74x181 4-bit ALU.
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Figure 21: Logic symbol
for the 74x181 4-bit ALU.
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When M = 0, arithmetic operations are selected, carries propagate between
the stages, and CIN is used as a carry input to the least significant stage. For
operations larger than four bits, multiple ’181 ALUs may be cascaded like the
group-ripple adder in the Figure 5-91, with the carry-out (COUT) of each ALU
connected to the carry-in (CIN) of the next most significant stage. The same
function-select signals (M, S3–S0) are applied to all the ’181s in the cascade.

To perform two’s-complement addition, we use S3–S0 to select the
operation “A plus B plus CIN.” The CIN input of the least-significant ALU is
normally set to 0 during addition operations. To perform two’s-complement
subtraction, we use S3–S0 to select the operation A minus B minus plus CIN. In
this case, the CIN input of the least significant ALU is normally set to 1, since
CIN acts as the complement of the borrow during subtraction. 

The ’181 provides other arithmetic operations, such as “A minus 1 plus
CIN,” that are useful in some applications (e.g., decrement by 1). It also provides
a bunch of weird arithmetic operations, such as “A ⋅ B′ plus (A + B) plus CIN,”
that are almost never used in practice, but that “fall out” of the circuit for free.

Notice that the operand inputs A3_L–A0_L and B3_L–B0_L and the
function outputs F3_L–F0_L of the ’181 are active low. The ’181 can also be
used with active-high operand inputs and function outputs. In this case, a differ-
ent version of the function table must be constructed. When M = 1, logical
operations are still performed, but for a given input combination on S3–S0, the
function obtained is precisely the dual of the one listed in Table 5-51. When
M = 0, arithmetic operations are performed, but the function table is once again
different. Refer to a ’181 data sheet for more details.

Two other MSI ALUs, the 74x381 and 74x382 shown in Figure 5-93,
encode their select inputs more compactly, and provide only eight different but
useful functions, as detailed in Table 5-52. The only difference between the ’381
and ’382 is that one provides group-carry lookahead outputs (which we explain
next), while the other provides ripple carry and overflow outputs. 
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Figure 22: Logic symbols for 4-bit ALUs: (a) 74x381; (b) 74x382.
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Table 12: Functions performed by the 74x381 and 74x382 4-bit ALUs.

Inputs

S2 S1 S0 Function

0 0 0 F = 0000
0 0 1 F = B minus A minus 1 plus CIN
0 1 0 F = A minus B minus 1 plus CIN
0 1 1 F = A plus B plus CIN
1 0 0 F = A⊕ B
1 0 1 F = A + B
1 1 0 F = A · B
1 1 1 F = 1111
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’381 provides group-carry-lookahead outputs while ’382 provides ripple
carry and overflow outputs
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’181 and ’381 provide group-carry-lookahead outputs that allow
multiple ALUs to be cascaded without rippling carries between 4-bit
groups

Like 74x283, ALUs use carry lookahead to produce carries internally
However, they also provide G L and P L outputs that are
carry-lookahead signals for entire 4-bit group

G L output is asserted if ALU produces a carry-out whether or not
there is a carry-in

G L = (g3 + p3 · g2 + p3 · p2 · g1 + p3 · p2 · p1 · g0)′

P L output is asserted if ALU produces a carry-out if there is a carry-in

P L = (p3 · p2 · p1 · p0)′
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When ALUs are cascaded, group-carry-lookahead outputs may be
combined in just two levels of logic to produce carry input to each
ALU

A lookahead carry circuit performs this operation
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*5.10.7 Group-Carry Lookahead
The ’181 and ’381 provide group-carry lookahead outputs that allow multiple
ALUs to be cascaded without rippling carries between 4-bit groups. Like the
74x283, the ALUs use carry lookahead to produce carries internally. However,
they also provide G_L and P_L outputs that are carry lookahead signals for the
entire 4-bit group. The G_L output is asserted if the ALU generates a carry, that
is, if it will produce a carry-out (COUT = 1) whether or not there is a carry-in
(CIN = 1):

The P_L output is asserted if the ALU propagates a carry, that is, if it will
produce a carry-out if there is a carry-in:

When ALUs are cascaded, the group-carry lookahead outputs may be
combined in just two levels of logic to produce the carry input to each ALU. A
lookahead carry circuit, the 74x182 shown in Figure 5-94, performs this opera-
tion. The ’182 inputs are C0, the carry input to the least significant ALU
(“ALU 0”), and G0–G3 and P0–P3, the generate and propagate outputs of ALUs
0–3. Using these inputs, the ’182 produces carry inputs C1–C3 for ALUs 1–3.
Figure 5-95 shows the connections for a 16-bit ALU using four ’381s and a
’182.

The 182’s carry equations are obtained by “adding out” the basic carry
lookahead equation of Section 5.10.4:

Expanding for the first three values of i, we obtain the following equations: 

Inputs Ta b le  5 - 5 2
Functions performed 
by the 74x381 and 
74x382 4-bit ALUs.

S2 S1 S0 Function

0 0 0 F = 0000
0 0 1 F = B minus A minus 1 plus CIN
0 1 0 F = A minus B minus 1 plus CIN

0 1 1 F = A plus B plus CIN
1 0 0 F = A ⊕ B
1 0 1 F = A + B
1 1 0 F = A ⋅ B
1 1 1 F = 1111

G_L = (g3 + p3 ⋅ g2 + p3 ⋅ p2 ⋅ g1 + p3 ⋅ p2 ⋅ p1 ⋅ g0)′ 

P_L = (p3 ⋅ p2 ⋅ p1 ⋅ p0)′

ci+1 = gi + pi ⋅ ci

= (gi + pi) ⋅ (gi + ci)

C1 = (G0+P0) ⋅ (G0+C0)
C2 = (G1+P1) ⋅ (G1+G0+P0) ⋅ (G1+G0+C0)
C3 = (G2+P2) ⋅ (G2+G1+P1) ⋅ (G2+G1+G0+P0) ⋅ (G2+G1+G0+C0)
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Figure 23: Logic symbol for the 74x182 lookahead carry circuit.
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Figure 24: A 16-bit ALU using group-carry lookahead.
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’182’s carry equations

’182 realizes each of these equations with one level of delay—an
INVERT-OR-AND gate

ci+1 = gi + pi · ci = (gi + pi ) · (gi + ci )

C1 = (G0 + P0) · (G0 + C0)

C2 = (G1 + P1) · (G1 + G0 + P0) · (G1 + G0 + C0)

C3 = (G2 + P2) · (G2 + G1 + P1) · (G2 + G1 + G0 + P0)

· (G2 + G1 + G0 + C0)
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When more than four ALUs are cascaded, they may be partitioned into
”supergroups,” each with its own ’182

E.g., a 64-bit adder would have four supergroups, each containing four
ALUs and a ’182
G L and P L outputs of each ’182 can be combined in a next-level ’182,
since they indicate whether the supergroup generates or propagates
carries

G L = ((G3 + P3) · (G3 + G2 + P2) · (G3 + G2 + G1 + P1)

· (G3 + G2 + G1 + G0))′

P L = (P0 · P1 · P2 · P3)′
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Verilog has built-in addition (+) and subtraction (−) operators for bit
vectors

Bit vectors are considered to be unsigned or two’s-complement signed
numbers
Actual addition or subtraction operation is exactly the same for either
interpretation of bit vectors
Since exactly the same logic circuit is synthesized for either
interpretation, Verilog compiler does not need to know how we are
interpreting bit vectors
Only handling of carry, borrow, and overflow conditions differs by
interpretation, and that is done separately from addition or subtraction
itself
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Table 13: Verilog program with addition of both signed and unsigned numbers.
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Figure 25: Two ways to synthesize a selectable addition: (a) two adders and a
selectable sum; (b) one adder with selectable inputs.
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Adders, Subtractors, and ALUs: Adders in Verilog

Addition and subtraction are expensive in terms of number of gates
required

Most Verilog compilers attempt to reuse adder blocks whenever possible

Tab. 14 is a Verilog module that includes two different additions
Fig. 25(a) shows a circuit that might be synthesized
However, many compilers are smart enough to use approach (b)
An n-bit 2-input multiplexer is smaller than an n-bit adder

Table 14: Verilog module that allows adder sharing.
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Adders, Subtractors, and ALUs: Adders in Verilog

Table 15: Alternate version of Tab. 14, using a continuous-assignment
statement.

A typical compiler should synthesize the same circuit for either module
of Tab. 14 or 15
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Table 16: An 8-bit 74x381-like ALU.
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When M = 0, arithmetic operations are selected, carries propagate between
the stages, and CIN is used as a carry input to the least significant stage. For
operations larger than four bits, multiple ’181 ALUs may be cascaded like the
group-ripple adder in the Figure 5-91, with the carry-out (COUT) of each ALU
connected to the carry-in (CIN) of the next most significant stage. The same
function-select signals (M, S3–S0) are applied to all the ’181s in the cascade.

To perform two’s-complement addition, we use S3–S0 to select the
operation “A plus B plus CIN.” The CIN input of the least-significant ALU is
normally set to 0 during addition operations. To perform two’s-complement
subtraction, we use S3–S0 to select the operation A minus B minus plus CIN. In
this case, the CIN input of the least significant ALU is normally set to 1, since
CIN acts as the complement of the borrow during subtraction. 

The ’181 provides other arithmetic operations, such as “A minus 1 plus
CIN,” that are useful in some applications (e.g., decrement by 1). It also provides
a bunch of weird arithmetic operations, such as “A ⋅ B′ plus (A + B) plus CIN,”
that are almost never used in practice, but that “fall out” of the circuit for free.

Notice that the operand inputs A3_L–A0_L and B3_L–B0_L and the
function outputs F3_L–F0_L of the ’181 are active low. The ’181 can also be
used with active-high operand inputs and function outputs. In this case, a differ-
ent version of the function table must be constructed. When M = 1, logical
operations are still performed, but for a given input combination on S3–S0, the
function obtained is precisely the dual of the one listed in Table 5-51. When
M = 0, arithmetic operations are performed, but the function table is once again
different. Refer to a ’181 data sheet for more details.

Two other MSI ALUs, the 74x381 and 74x382 shown in Figure 5-93,
encode their select inputs more compactly, and provide only eight different but
useful functions, as detailed in Table 5-52. The only difference between the ’381
and ’382 is that one provides group-carry lookahead outputs (which we explain
next), while the other provides ripple carry and overflow outputs. 
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Figure 5-93
Logic symbols for 4-bit 
ALUs: (a) 74x381;
(b) 74x382.

74x382

Inputs

S2 S1 S0 Function

0 0 0 F = 0000
0 0 1 F = B minus A minus 1 plus CIN
0 1 0 F = A minus B minus 1 plus CIN
0 1 1 F = A plus B plus CIN
1 0 0 F = A⊕ B
1 0 1 F = A + B
1 1 0 F = A · B
1 1 1 F = 1111
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Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 70 / 70


