
Design of Digital Systems II
Sequential-Circuit Design with Verilog

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University

Brno, Czech Republic

amiri@mail.muni.cz

prenosil@fi.muni.cz

Fall, 2014

Clocked Circuits

Majority of Verilog-based digital design is directed to clocked,
synchronous systems that use edge-triggered flip-flops
Like combinational behavior, edge-triggered behavior is specified using
always blocks

Difference between combinational and edge-triggered behavior is in
sensitivity list of always block
Keyword posedge or negedge is placed in front of signal name to
indicate that the statements in block should be executed only at positive
(rising) or negative (falling) edge of named signal

Table 1: Behavioral Verilog for a positive-edge-triggered D flip-flop.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 2 / 25

Clocked Circuits

Table 2: Behavioral Verilog for a positive-edge-triggered D flip-flop with preset
and clear.

<

Tab. 2 models a positive edge-triggered D flip-flop with asynchronous
active-low preset and clear inputs

An edge-sensitivity keyword, negedge, is applied to a level,
asynchronous input

Verilog compilers are set up to recognize this particular representation of
edge-triggered-plus-asynchronous behavior, and in synthesis they will
pick up right flip-flop component to implement it

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 3 / 25

Clocked Circuits

Table 3: Two modules for a positive-edge-triggered D ff with a QN output.

Tab. 3
A typical synthesis tool infers two separate D flip-flops from the first
module—one for Q and the other for QN
For the second module, QN is generated from Q using an inverter

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 4 / 25

Clocked Circuits

Always use nonblocking assignments (<=) in sequential always blocks

In programs with multiple sequential always blocks using blocking
assignments (=), simulation results can vary depending on the order in
which the simulator chooses to execute those blocks
Using nonblocking assignments ensures that righthand sides of all
assignments are evaluated before new values are assigned to any of
lefthand sides
This makes results independent of order in which righthand sides are
evaluated

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 5 / 25

Clocked Circuits

Table 4: Clock generation within a test bench.

Tab. 4 shows generation of a 100-MHz clock with a 60% duty cycle
At time 0, MCLK is set to 1 by initial block
Then, always block waits 6 ns, sets MCLK to 0, waits 4 ns, sets MCLK to
1, and repeats forever
t̀imescale directive is used to set up the simulator both a default time

unit and a precision of 1 ns

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 6 / 25

State-Machine Design with Verilog

There are many possible coding styles for creating state machines in
Verilog, including using no consistent style at all

Without discipline of a consistent coding style, it is easy to write
syntactically correct code where simulator’s operation, synthesized
hardware’s operation, and what we think the machine should be doing
are all different

In Verilog state-machine coding style, code is divided into three parts
State memory

This can be specified in behavioral form using an always block that is
sensitive to a signal edge
Or it can use a structural style with explicit flip-flop instantiations

Next-state (excitation) logic
This is written as a combinational always block whose sensitivity list
includes machine’s current state and inputs
This block usually contains a case statement that enumerates all values
of current state

Output logic
This is another combinational always block that is sensitive to current
state and inputs
It may or may not include a case statement, depending on complexity of
output function

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 7 / 25

State-Machine Design with Verilog

Figure 1: Moore state-machine structure implied by Verilog coding style.

Detailed coding within each section may very
When there is a tight coupling of next-state and output-logic
specifications, it may be desirable to combine them into a single
combinational always block, and into a single case statement
When pipelined outputs are used, output memory could be specified
along with state memory, or a separate process or structural code could
be used

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 8 / 25

A Verilog State-Machine Example

Design a clocked synchronous state machine with two inputs, A and B,
and a single output Z that is 1 if

A had the same value at each of two previous clock ticks, or
B has been 1 since the last time that the first condition was true

Otherwise, output should be 0
One approach to writing a program is to construct a state and output
table by hand and then manually convert it into a corresponding
program

Table 5: State and output table for the example state machine.

A B

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0
A0 OK0 OK0 A1 A1 0
A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1
OK1 A0 OK0 OK1 OK1 1

S∗

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 9 / 25

A Verilog State-Machine Example

Table 6: Verilog program for state-machine example.

A B

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0
A0 OK0 OK0 A1 A1 0
A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1
OK1 A0 OK0 OK1 OK1 1

S∗

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 10 / 25

A Verilog State-Machine Example

First always block (state memory creation) in Tab. 6

During synthesis, positive-edge-triggered D flip-flops are inferred for
Sreg

A synchronous or asynchronous RESET signal is easily provided as
shown in Tab. 7

Table 7: Synchronous and asynchronous reset for state machines in Verilog.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 11 / 25

A Verilog State-Machine Example

Second always block (next-state logic) in Tab. 6

default case at the end handles unused states, but not uncovered
input combinations in other cases
In each case, an if statement and a final else is used to ensure that a
value is always assigned to Snext

If there were any state/input combinations in which no value was
assigned to Snext, Verilog compiler would infer an unwanted latch for
Snext

Variations

To establish a default next state for machine if case fails to cover all
state/input combinations, precede case statement with ”Snext =

INIT”
When most transitions stay in current state, case statement can be
preceded by ”Snext = Sreg”
Preceding with ”Snext = 3’bx” is another variation which is useful in
simulation to detect unspecified state/input combinations

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 12 / 25

A Verilog State-Machine Example

Third always block (output logic) in Tab. 6
Handles machine’s single Moore output, Z, which is set to a value as a
function of current state
To define Mealy output, output should be a function of inputs as well as
state in each enumerated case

Inputs should also be added to sensitivity list of always block

Pipelined outputs
In design of high-speed circuits, it is often necessary to ensure that
state-machine outputs are available as early as possible and do not
change during each clock period
One way to get this behavior is to encode state so that state variables
themselves serve as outputs

Called output-coded state assignment
It yields a Moore machine in which output logic is wires

Another approach is to design state machine so that outputs during one
clock period depend on state and inputs during previous clock period

Called pipelined outputs
Obtained by attaching another stage of memory (flip-flops) to a
machine’s outputs

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 13 / 25

A Verilog State-Machine Example

State

Memory

clock input

Next-state
Logic

F

Output
Logic

G

excitation current stateinputs

clock
signal

pipelined
outputs

Output
Pipeline
Memory

clock input

Figure 2: Mealy machine with pipelined outputs.

In our example Verilog state machine, the module defines a
Moore-type state machine with the structure shown in Fig. 1

We can convert the machine to have pipelined outputs with the
structure shown in Fig. 3
To do this, we need only to declare a ”next-output” variable Zn and
replace the original Verilog state-memory and output code with code
shown in Tab. 8

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 14 / 25

A Verilog State-Machine Example

Figure 3: Verilog state machine with pipelined outputs.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 15 / 25

A Verilog State-Machine Example

Table 8: Verilog pipelined output code.

New machine’s behavior is indistinguishable from that of original
machine, except for timing

We have reduced propagation delay from CLOCK to Z by producing Z

directly on a register output
But we have increased setup-time requirements of A and B to CLOCK

In addition to their propagation delay through next-state logic, changes
in A and B must also get through output logic in time to meet setup
time requirement of output flip-flop’s D input

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 16 / 25

A Verilog State-Machine Example

Direct Verilog coding without a state table

It is possible to write a Verilog program directly, without writing out a
state table by hand
Design a clocked synchronous state machine with two inputs, A and B,
and a single output Z that is 1 if

A had the same value at each of two previous clock ticks, or
B has been 1 since the last time that the first condition was true

Otherwise, output should be 0
We need to have a register that keeps track of A (LASTA)
Three states must be defined

INIT

LOOKING: still looking for a match
OK: got a match or B has been 1 since last match

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 17 / 25

A Verilog State-Machine Example

Table 9: Simplified Verilog state-machine design.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 18 / 25

A Verilog State-Machine Example

Tab. 9

First always block creates both state memory and LASTA register
Second one creates next-state logic using our simplified approach
Z output is a simple combinational decode of OK state, so it is created
using a continuous-assignment statement

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 19 / 25

More Verilog State-Machine Examples

Ones-counting machine
Design a clocked synchronous state machine with two inputs, X and Y,
and one output, Z
Output should be 1 if the number of 1 inputs on X and Y since reset is a
multiple of 4, and 0 otherwise

We can write a Verilog module for this problem directly, without
constructing a state table

Table 10: Verilog module for a ones-counting machine.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 20 / 25

More Verilog State-Machine Examples

In synthesis, counting logic in Tab. 10 does not necessarily yield a
compact or speedy circuit

With a simple tool, it could yield two 2-bit adders connected in series
A good tool may be able to synthesize a more compact incrementer for
each of the two additions
Another approach is to replace NEXTCNT always block with the one
shown in Tab. 11

Formulating the choices in a case statement makes for a faster circuit,
allowing the two adders or incrementers to operate in parallel
A multiplexer can be used to select one of outputs according to choices

To ensure that only one full adder is synthesized, we use code shown in
Tab. 12

Table 11: Alternative Verilog counting logic for ones-counting machine.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 21 / 25

More Verilog State-Machine Examples

Table 12: Fastest and smallest Verilog counting logic for ones-counting
machine.

Tab. 12

A 2-bit reg variable XY1s is declared
The two equations create a half adder
Only one full adder is synthesized

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 22 / 25

More Verilog State-Machine Examples

Combination-lock state machine

Design a clocked synchronous state machine with one input, X, and one
output, UNLK
UNLK output should be 1 if and only if X is 0 and the sequence of inputs
received on X at preceding seven clock ticks was 0110111
Output of the machine at any time is completely determined by its
inputs during current and preceding seven clock ticks

Thus, we use a ”finite-memory” approach to design this machine
With this approach, we explicitly keep track of past seven inputs and
then form output as a combinational function of these and current inputs

Tab. 13

This module keeps track of last seven values of X using a ”shift register”
Bits are shifted left on each clock tick
Next-state logic is put into the same always block as state memory
XHISTORY is initialized to all 1s at reset so the user does not get benefit
of a ”free” 0 right after reset to begin combination pattern

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 23 / 25

More Verilog State-Machine Examples

Table 13: Verilog module for finite-memory design of combination-lock state
machine.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 24 / 25

References

John F. Wakerly, Digital Design: Principles and Practices (4th
Edition), Prentice Hall, 2005.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 25 / 25

