
Design of Digital Systems II
Sequential Logic Design Practices (1)

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University

Brno, Czech Republic

amiri@mail.muni.cz

prenosil@fi.muni.cz

Fall, 2014

Timing Diagrams and Specifications

564 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The solution to this problem is similar to the one adopted by programmers
who write self-documenting code using a high-level language. The key is to
select a representation that is both expressive of the designer’s intentions and
that can be translated into a physical realization using an error-free, automated
process. (You don’t hear many programmers screaming “Compiler bug!” when
their programs don’t work the first time.)

The best solution (for now, at least) is to write state-machine “programs”
directly in a high-level state-machine description language like ABEL or
VHDL, and to avoid alternate representations, other than general, summary
word descriptions. Languages like ABEL and VHDL are easily readable and
allow automatic conversion of the description into a PLD-, FPGA-, or ASIC-
based realization. Some CAD tools allow state machines to be specified and
synthesized using state diagrams, or even using sample timing diagrams, but
these can often lead to ambiguities and unanticipated results. Thus, we’ll use
ABEL/VHDL approach exclusively for the rest of this book.

8.1.4 Timing Diagrams and Specifications
We showed many examples of timing diagrams in Chapters 5 and 7. In the
design of synchronous systems, most timing diagrams show the relationship
between the clock and various input, output, and internal signals.

Figure 8-1 shows a fairly typical timing diagram that specifies the require-
ments and characteristics of input and output signals in a synchronous circuit.
The first line shows the system clock and its nominal timing parameters. The
remaining lines show a range of delays for other signals.

For example, the second line shows that flip-flops change their outputs at
some time between the rising edge of CLOCK and time tffpd afterward. External
circuits that sample these signals should not do so while they are changing. The
timing diagram is drawn as if the minimum value of tffpd is zero; a complete

Figure 8-1
A detailed timing
diagram showing
propagation delays
and setup and hold
times with respect to
the clock.

CLOCK

flip-flop
outputs

flip-flop
inputs

combinational
outputs

tH

tcomb

tsetupsetup-time margin

tL
tclk

tffpd

thold

Figure 1: A detailed timing diagram showing propagation delays and setup and
hold times with respect to the clock.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 2 / 63

Timing Diagrams and Specifications

In Fig. 1

First line shows system clock and its nominal timing parameters
Second line shows that flip-flops change their outputs at some time
between rising edge of CLOCK and time tffpd afterward

External circuits that sample these signals should not do so while they
are changing

Third line shows tcomb required for flip-flop output changes to propagate
through combinational logic elements, such as flip-flop excitation logic
Excitation inputs of flip-flops and other clocked devices require a setup
time of tsetup as shown in fourth line
For proper circuit operation: tclk − tffpd − tcomb > tsetup

Timing margins indicate how much ”worse than worst-case” the
individual components of a circuit can be without causing circuit to fail

Well-designed systems have positive, nonzero timing margins

Setup-time margin: tclk − tffpd(max) − tcomb(max) − tsetup

For proper circuit operation: tffpd(min) + tcomb(min) > thold

Hold-time margin: tffpd(min) + tcomb(min) − thold

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 3 / 63

Timing Diagrams and Specifications

In most circuits, there are timing differences between different flip-flop
inputs or combinational-logic signals

E.g., one flip-flop’s Q output may be connected directly to another
flip-flop’s D input

tcomb for that path is zero, while another’s may go through a long
combinational path before reaching a flip-flop input

When proper synchronous design methodology is used, these relative
timings are not critical, since none of these signals affect state of circuit
until a clock edge occurs
Merely finding longest delay path in one clock period to determine
whether circuit will work is enough

Requires analyzing several different paths in order to find worst-case one

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 4 / 63

Timing Diagrams and Specifications

Section 8.1 Sequential Circuit Documentation Standards 565

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

documentation package would include a timing table indicating the actual
minimum, typical, and maximum values of tffpd and all other timing parameters.

The third line of the timing diagram shows the additional time, tcomb,
required for the flip-flop output changes to propagate through combinational
logic elements, such as flip-flop excitation logic. The excitation inputs of flip-
flops and other clocked devices require a setup time of tsetup, as shown in the
fourth line. For proper circuit operation we must have tclk − tffpd − tcomb> tsetup.

Timing margins indicate how much “worse than worst-case” the individual
components of a circuit can be without causing the circuit to fail. Well-designed
systems have positive, nonzero timing margins to allow for unexpected circum-
stances (marginal components, brown-outs, engineering errors, etc.) and clock
skew (Section 8.8.1).

The value tclk − tffpd(max)− tcomb(max)− tsetup is called the setup-time margin;
if this is negative, the circuit won’t work. Note that maximum propagation delays
are used to calculate setup-time margin. Another timing margin involves the
hold-time requirement thold; the sum of the minimum values of tffpd and tcomb
must be greater than thold, and the hold-time margin is tffpd(min) + tcomb(min)− thold.

The timing diagram in Figure 8-1 does not show the timing differences
between different flip-flop inputs or combinational-logic signals, even though
such differences exist in most circuits. For example, one flip-flop’s Q output
may be connected directly to another flip-flop’s D input, so that tcomb for
that path is zero, while another’s may go the ripple-carry path of a 32-bit
adder before reaching a flip-flop input. When proper synchronous design
methodology is used, these relative timings are not critical, since none of these
signals affect the state of the circuit until a clock edge occurs. You merely have
to find the longest delay path in one clock period to determine whether the
circuit will work. However, you may have to analyze several different paths in
order to find the worst-case one.

Another, perhaps more common, type of timing diagram shows only
functional behavior and is not concerned with actual delay amounts; an example
is shown in Figure 8-2. Here, the clock is “perfect.” Whether to show signal
changes as vertical or slanted lines is strictly a matter of personal taste in this and
all other timing diagrams, unless rise and fall times must be explicitly indicated.
Clock transitions are shown as vertical lines in this and other figures in keeping
with the idea that the clock is a “perfect” reference signal.

timing margin

setup-time margin

hold-time margin

CLOCK

SYNC_L

SIG1

DBUS DATA1 DATA2

Figure 8-2
Functional timing of a
synchronous circuit.

Figure 2: Functional timing of a synchronous circuit.

Functional timing diagram shows only functional behavior and is not
concerned with actual delay amounts

Lining up everything on clock edge allows timing diagram to display
more clearly which functions are performed during each clock period
Shading or cross-hatching is used to indicate ”don’t-care” signal values

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 5 / 63

SSI Latches and Flip-Flops

SSI latches and flip-flops have been eliminated to a large extent in
modern designs as their functions are embedded in PLDs and FPGAs

Nevertheless, some of them still appear in many digital systems
Section 8.2 Latches and Flip-Flops 569

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

*8.2.2 Switch Debouncing
A common application of simple bistables and latches is switch debouncing.
We’re all familiar with electrical switches from experience with lights, garbage
disposals, and other appliances. Switches connected to sources of constant logic
0 and 1 are often used in digital systems to supply “user inputs.” However, in
digital logic applications we must consider another aspect of switch operation,
the time dimension. A simple make or break operation, which occurs instantly
as far as we slow-moving humans are concerned, actually has several phases that
are discernible by high-speed digital logic.

Figure 8-4(a) shows how a single-pole, single-throw (SPST) switch might
be used to generate a single logic input. A pull-up resistor provides a logic-1
value when the switch is opened, and the switch contact is tied to ground to
provide a logic-1 value when the switch is pushed.

As shown in (b), it takes a while after a push for the wiper to hit the bottom
contact. Once it hits, it doesn’t stay there for long; it bounces a few times before
finally settling. The result is that several transitions are seen on the SW_L and
DSW logic signals for each single switch push. This behavior is called contact
bounce. Typical switches bounce for 10–20 ms, a very long time compared to the
switching speeds of logic gates.

Contact bounce may or may not be a problem, depending on the switch
application. For example, some computers have configuration information
specified by small switches, called DIP switches because they are the same size
as a dual in-line package (DIP). Since DIP switches are normally changed only
when the computer is inactive, there’s no problem. Contact bounce is a problem

* Throughout this book, optional sections are marked with an asterisk.

74x37574x74

3

2

7

12

1

4

9

15

1,2C

1D

2D

3,4C

3D

4D

1Q

1Q
5

5

4

1

3

2

6

6
2Q

11

10
3Q

13

14
4Q

2Q

3Q

4Q

D Q

Q
CLK

CLR

PR

74x74

9

10

13

11

12

8

D Q

Q
CLK

CLR

PR

74x109

10

11

15

12

14

9

J

13
K

Q

Q

CLK

CLR

PR

74x112

9

10

14

13

11

7

J

12
K

Q

Q

CLK

CLR

PR

74x109

6

5

1

4

2

7

J

3
K

Q

Q

CLK

CLR

PR

74x112

5

4

15

1

3

6

J

2
K

Q

Q

CLK

CLR

PR

DIP switch

Figure 3: Pinouts for SSI latches and flip-flops.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 6 / 63

SSI Latches and Flip-Flops

In Fig. 3
The only latch is 74x375, which contains four D latches

Because of pin limitations, latches are arranged in pairs with a common
C control line for each pair

The most important device is 74x74

It contains two independent positive-edge-triggered D flip-flops with
preset and clear inputs

74x109 is a positive-edge-triggered J-K flip-flop with an active-low K
input
Another J-K flip-flop is 74x112, which has an active-low clock input

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 7 / 63

Switch Debouncing

A common application of bistables and latches is switch debouncing
Switches connected to sources of constant logic 0 and 1 are often used
in digital systems to supply user inputs
A simple make or break operation done by slow-moving humans, has
several phases in high-speed digital logic

570 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

if a switch is being used to count or signal some event (e.g., laps in a race). Then
we must provide a circuit (or, in microprocessor-based systems, software) to
debounce the switch—to provide just one signal change or pulse for each
external event.

*8.2.3 The Simplest Switch Debouncer
Switch debouncing is a good application for the simplest sequential circuit, the
bistable element of Section 7.1, which can be used as shown in Figure 8-5. This
circuit uses a single-pole, double-throw (SPDT) switch. The switch contacts and
wiper have a “break before make” behavior, so the wiper terminal is “floating”
at some time halfway through the switch depression. i

Before the button is pushed, the top contact holds SW at 0 V, a valid logic
0, and the top inverter produces a logic 1 on SW_L and on the bottom contact.
When the button is pushed and contact is broken, feedback in the bistable holds
SW at VOL (≤ 0.5 V for LS-TTL), still a valid logic 0.

Next, when the wiper hits the bottom contact, the circuit operates quite
unconventionally for a moment. The top inverter in the bistable is trying to
maintain a logic 1 on the SW_L signal; the top transistor in its totem-pole output
is “on” and connecting SW_L through a small resistance to +5 V. Suddenly,
the switch contact makes a metallic connection of SW_L to ground, 0.0 V. Not
surprisingly, the switch contact wins.

A short time later (30 ns for the 74LS04), the forced logic 0 on SW_L
propagates through the two inverters of the bistable, so that the top inverter gives
up its vain attempt to drive a 1, and instead drives a logic 0 onto SW_L. At this
point, the top inverter output is no longer shorted to ground, and feedback in the
bistable maintains the logic 0 on SW_L even if the wiper bounces off the bottom
contact, as it does. (It does not bounce far enough to touch the top contact again.)

push

+5V

SW_L DSW

(a)

1

0

+5V

GND

push
first contact bounce

(b)

SW_L

DSW

74LS04

Figure 8-4
Switch input without
debouncing.

debounce

Figure 4: Switch input without debouncing.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 8 / 63

Switch Debouncing

Fig. 4 shows how a single-pole, single-throw (SPST) switch is used to
generate a single logic input

After wiper hits bottom contact, it bounces a few times before finally
settling

Results in several transitions on SW L and DSW
This behavior is called contact bounce

Typical switches bounce for 10-20 ms, a very long time compared to
switching speeds of logic gates

Contact bounce is a problem if a switch is used to count or signal
some event

We must provide a circuit to debounce switch

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 9 / 63

Switch Debouncing Section 8.2 Latches and Flip-Flops 571

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Advantages of this circuit compared to other debouncing approaches are
that it has a low chip count (one-third of a 74LS04), no pull-up resistors are
required, and both polarities of the input signal (active-high and active-low)
are produced. In situations where momentarily shorting gate outputs must be
avoided, a similar circuit can be designed using a S-R latch and pull-up resistors,
as suggested in Figure 8-6.

(a)

SW_L

SW_L

SW

SW DSWpush

push

first contact
bounce(b)

GND
VOL

VOH

GND
VOL

VOH

SW

SW_L

DSW
1

0

74LS04 74LS04

Figure 8-5
Switch input using
a bistable for
debouncing

SWD_L

DSW_L

DSW

SWU_L

push

+5 V

+5 V

74LS00

Figure 8-6
Switch input using
an S-R latch for
debouncing.

WHERE WIMPY
WORKS WELL

The circuit in Figure 8-5, while elegant, should not be used with high-speed CMOS
devices, like the 74ACT04, whose outputs are capable of sourcing large amounts of
current in the HIGH state. While shorting such outputs to ground momentarily will
not cause any damage, it will generate a noise pulse on power and ground signals that
may trigger improper operation of the circuit elsewhere. The debouncing circuit in
the figure works well with wimpy logic families like HCT and LS-TTL.

Figure 5: Switch input using a bistable for debouncing.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 10 / 63

Switch Debouncing

Fig. 5 shows a switch debouncing application for bistable element
This circuit uses a single-pole, double-throw (SPDT) switch
Before button is pushed

Top contact holds SW at 0 V −→ a valid logic 0
When button is pushed and contact is broken

Feedback in bistable holds SW at VOL −→ still a valid logic 0
VOL = output low voltage (≤ 0.5 V for TTL)

When wiper hits bottom contact
Suddenly, SW L is shorted to ground
A short time later, forced logic 0 on SW L propagates through two
inverters of bistable
At this point, top inverter output is no longer shorted to ground
Feedback in bistable maintains logic 0 on SW L even if wiper bounces
off bottom contact

Advantages of this circuit
It has a low chip count
No pull-up resistors are required
Both polarities of input signal (active-high and active-low) are produced

In situations where momentarily shorting gate outputs must be
avoided, a S − R latch and pull-up resistors are used

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 11 / 63

Switch Debouncing

Section 8.2 Latches and Flip-Flops 571

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Advantages of this circuit compared to other debouncing approaches are
that it has a low chip count (one-third of a 74LS04), no pull-up resistors are
required, and both polarities of the input signal (active-high and active-low)
are produced. In situations where momentarily shorting gate outputs must be
avoided, a similar circuit can be designed using a S-R latch and pull-up resistors,
as suggested in Figure 8-6.

(a)

SW_L

SW_L

SW

SW DSWpush

push

first contact
bounce(b)

GND
VOL

VOH

GND
VOL

VOH

SW

SW_L

DSW
1

0

74LS04 74LS04

Figure 8-5
Switch input using
a bistable for
debouncing

SWD_L

DSW_L

DSW

SWU_L

push

+5 V

+5 V

74LS00

Figure 8-6
Switch input using
an S-R latch for
debouncing.

WHERE WIMPY
WORKS WELL

The circuit in Figure 8-5, while elegant, should not be used with high-speed CMOS
devices, like the 74ACT04, whose outputs are capable of sourcing large amounts of
current in the HIGH state. While shorting such outputs to ground momentarily will
not cause any damage, it will generate a noise pulse on power and ground signals that
may trigger improper operation of the circuit elsewhere. The debouncing circuit in
the figure works well with wimpy logic families like HCT and LS-TTL.

Figure 6: Switch input using an S − R latch for debouncing.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 12 / 63

Multibit Registers and Latches

A collection of two or more D flip-flops with a common clock input is
called a register

Section 8.2 Latches and Flip-Flops 573

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

8.2.5 Multibit Registers and Latches
A collection of two or more D flip-flops with a common clock input is called a
register. Registers are often used to store a collection of related bits, such as a
byte of data in a computer. However, a single register can also be used to store
unrelated bits of data or control information; the only real constraint is that all
of the bits are stored using the same clock signal.

Figure 8-8 shows the logic diagram and logic symbol for a commonly used
MSI register, the 74x175. The 74x175 contains four edge-triggered D flip-flops
with a common clock and asynchronous clear inputs. It provides both active-
high and active-low outputs at the external pins of the device.

The individual flip-flops in a ’175 are negative-edge triggered, as indicated
by the inversion bubbles on their CLK inputs. However, the circuit also contains
an inverter that makes the flip-flops positive-edge triggered with respect to the
device’s external CLK input pin. The common, active-low, clear signal (CLR_L)
is connected to the asynchronous clear inputs of all four flip-flops. Both CLK and
CLR_L are buffered before fanning out to the four flip-flops, so that a device
driving one of these inputs sees only one unit load instead of four. This is
especially important if a common clock or clear signal must drive many such
registers.

register

74x175

74x175

CLR

CLK

1D
1Q

9

2

1Q
3

1

4

2D
5

3D
12

4D
13

2Q
7

6

3Q
10

11

4Q

2Q

3Q

4Q

15

14

(b)

(a)

D Q

QCLK

CLR

(2)

(3)

(4)
1Q

1Q_L

1D

D Q

QCLK

CLR

(7)

(6)

(5)
2Q

2Q_L

2D

D Q

QCLK

CLR

(10)

(11)

(12)
3Q

3Q_L

3D

D Q

QCLK

CLR

(15)

(14)

(13)

(9)

(1)

4Q

4Q_L

4D

CLK

CLR_L

Figure 7: The 74x175 4-bit register: (a) logic diagram, including pin numbers
for a standard 16-pin dual in-line package; (b) traditional logic symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 13 / 63

Multibit Registers and Latches

In 74x175, both CLK and CLR L are buffered before fanning out to
four flip-flops

A device driving one of these inputs sees only one unit load instead of
four

74x174 is similar to 74x175, except that it eliminates active-low
outputs and provides two more flip-flops instead

574 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The logic symbol for the 74x174, 6-bit register is shown in Figure 8-9. The
internal structure of this device is similar to the 74x175’s, is similar, except that
it eliminates the active-low outputs and provides two more flip-flops instead.

Many digital systems, including computers, telecommunications devices,
and stereo equipment, process information 8, 16, or 32 bits at a time; as a result,
ICs that handle eight bits are very popular. One such MSI IC is the 74x374 octal
edge-triggered D flip-flop, also known simply as an 8-bit register. (Once again,
“octal” means that the device has eight sections.)

As shown in Figure 8-10, the 74x374 contains eight edge-triggered D flip-
flops that all sample their inputs and change their outputs on the rising edge of a
common CLK input. Each flip-flop output drives a three-state buffer that in turn
drives an active-high output. All of the three-state buffers are enabled by a

74x174

CLR

CLK

1D 1Q

9

2

2Q
5

1

3

2D
4

3D
6

4D
11

5D
13

6D
14

3Q
7

10

5Q
12

15

4Q

6Q

Figure 8-9
Logic symbol for the
74x174 6-bit register.

74x374

OE

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

(b)

(a)

(2)

(3)

1Q

1D

2D

(1)

(11)

OE_L

CLK

D

QCLK

(5)

(4)

2Q

D

QCLK

3D
(6)

(7)

3Q

D

QCLK

4D
(9)

(8)

4Q

D

QCLK

5D
(12)

(13)

5Q

D

QCLK

6D
(15)

(14)

6Q

D

QCLK

7D
(16)

(17)

7Q

D

QCLK

8D
(19)

(18)

8Q

D

QCLK

Figure 8-10
The 74x374 8-bit register:
(a) logic diagram, including pin
numbers for a standard 20-pin
dual in-line package;
(b) traditional logic symbol.

Figure 8: Logic symbol for the 74x174 6-bit register.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 14 / 63

Multibit Registers and Latches

Many digital systems process information 8, 16, or 32 bits at a time

ICs that handle eight bits are very popular

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 15 / 63

Multibit Registers and Latches

574 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The logic symbol for the 74x174, 6-bit register is shown in Figure 8-9. The
internal structure of this device is similar to the 74x175’s, is similar, except that
it eliminates the active-low outputs and provides two more flip-flops instead.

Many digital systems, including computers, telecommunications devices,
and stereo equipment, process information 8, 16, or 32 bits at a time; as a result,
ICs that handle eight bits are very popular. One such MSI IC is the 74x374 octal
edge-triggered D flip-flop, also known simply as an 8-bit register. (Once again,
“octal” means that the device has eight sections.)

As shown in Figure 8-10, the 74x374 contains eight edge-triggered D flip-
flops that all sample their inputs and change their outputs on the rising edge of a
common CLK input. Each flip-flop output drives a three-state buffer that in turn
drives an active-high output. All of the three-state buffers are enabled by a

74x174

CLR

CLK

1D 1Q

9

2

2Q
5

1

3

2D
4

3D
6

4D
11

5D
13

6D
14

3Q
7

10

5Q
12

15

4Q

6Q

Figure 8-9
Logic symbol for the
74x174 6-bit register.

74x374

OE

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

(b)

(a)

(2)

(3)

1Q

1D

2D

(1)

(11)

OE_L

CLK

D

QCLK

(5)

(4)

2Q

D

QCLK

3D
(6)

(7)

3Q

D

QCLK

4D
(9)

(8)

4Q

D

QCLK

5D
(12)

(13)

5Q

D

QCLK

6D
(15)

(14)

6Q

D

QCLK

7D
(16)

(17)

7Q

D

QCLK

8D
(19)

(18)

8Q

D

QCLK

Figure 9: The 74x374 8-bit register: (a) logic diagram, including pin numbers
for a standard 20-pin dual in-line package; (b) traditional logic symbol.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 16 / 63

Multibit Registers and Latches

74x374

It contains eight edge-triggered D flip-flops that all sample their inputs
and change their outputs on rising edge of a common CLK input
Each flip-flop output drives a three-state buffer that in turn drives an
active-high output
All of three-state buffers are enabled by a common active-low OE L
(output enable) input
Control inputs (CLK and OE L) are buffered so that they present only
one unit load to a device that drives them

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 17 / 63

Multibit Registers and Latches

74x373 is a variation of 74x374 which uses D latches instead of
edge-triggered flip-flops

Its outputs follow corresponding inputs whenever C is asserted and latch
the last input values when C is negated

Section 8.2 Latches and Flip-Flops 575

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

common, active-low OE_L (output enable) input. As in the other registers that
we’ve studied, the control inputs (CLK and OE_L) are buffered so that they
present only one unit load to a device that drives them.

One variation of the 74x374 is the 74x373, whose symbol is shown in
Figure 8-11. The ’373 uses D latches instead of edge-triggered flip-flops. There-
fore, its outputs follow the corresponding inputs whenever C is asserted, and
latch the last input values when C is negated. Another variation is the 74x273,
shown in Figure 8-12. This octal register has non-three-state outputs and no
OE_L input; instead it uses pin 1 for an asynchronous clear input CLR_L.

The 74x377, whose symbol is shown in Figure 8-13(a), is an edge-
triggered register like the ’374, but it does not have three-state outputs. Instead,
pin 1 is used as an active-low clock enable input EN_L. If EN_L is asserted
(LOW) at the rising edge of the clock, then the flip-flops are loaded from the data
inputs; otherwise, they retain their present values, as shown logically in (b).

74x373

OE

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-11
Logic symbol for the
74x373 8-bit latch.

74x273

CLR

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-12
Logic symbol for the
74x273 8-bit register.

Q

CLK

EN_L

CK

D

8D

8Q

(18)

(19)

(1)

(11)

74x377

EN

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

(a) (b)

Figure 8-13 The 74x377 8-bit register with gated clock:
(a) logic symbol; (b) logical behavior of one bit.

Figure 10: Logic symbol for the 74x373 8-bit latch.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 18 / 63

Multibit Registers and Latches

74x273 is another variation of 74x374 which has non-three-state
outputs and no OE L input

It uses pin 1 for an asynchronous clear input CLR L

Section 8.2 Latches and Flip-Flops 575

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

common, active-low OE_L (output enable) input. As in the other registers that
we’ve studied, the control inputs (CLK and OE_L) are buffered so that they
present only one unit load to a device that drives them.

One variation of the 74x374 is the 74x373, whose symbol is shown in
Figure 8-11. The ’373 uses D latches instead of edge-triggered flip-flops. There-
fore, its outputs follow the corresponding inputs whenever C is asserted, and
latch the last input values when C is negated. Another variation is the 74x273,
shown in Figure 8-12. This octal register has non-three-state outputs and no
OE_L input; instead it uses pin 1 for an asynchronous clear input CLR_L.

The 74x377, whose symbol is shown in Figure 8-13(a), is an edge-
triggered register like the ’374, but it does not have three-state outputs. Instead,
pin 1 is used as an active-low clock enable input EN_L. If EN_L is asserted
(LOW) at the rising edge of the clock, then the flip-flops are loaded from the data
inputs; otherwise, they retain their present values, as shown logically in (b).

74x373

OE

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-11
Logic symbol for the
74x373 8-bit latch.

74x273

CLR

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-12
Logic symbol for the
74x273 8-bit register.

Q

CLK

EN_L

CK

D

8D

8Q

(18)

(19)

(1)

(11)

74x377

EN

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

(a) (b)

Figure 8-13 The 74x377 8-bit register with gated clock:
(a) logic symbol; (b) logical behavior of one bit.

Figure 11: Logic symbol for the 74x273 8-bit register.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 19 / 63

Multibit Registers and Latches

74x377 is an edge-triggered register like ’374, but it does not have
three-state outputs

Instead, pin 1 is used as an active-low clock enable input EN L
If EN L is asserted (LOW) at rising edge of clock, flip-flops are loaded
from data inputs; otherwise, they retain their present values

Section 8.2 Latches and Flip-Flops 575

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

common, active-low OE_L (output enable) input. As in the other registers that
we’ve studied, the control inputs (CLK and OE_L) are buffered so that they
present only one unit load to a device that drives them.

One variation of the 74x374 is the 74x373, whose symbol is shown in
Figure 8-11. The ’373 uses D latches instead of edge-triggered flip-flops. There-
fore, its outputs follow the corresponding inputs whenever C is asserted, and
latch the last input values when C is negated. Another variation is the 74x273,
shown in Figure 8-12. This octal register has non-three-state outputs and no
OE_L input; instead it uses pin 1 for an asynchronous clear input CLR_L.

The 74x377, whose symbol is shown in Figure 8-13(a), is an edge-
triggered register like the ’374, but it does not have three-state outputs. Instead,
pin 1 is used as an active-low clock enable input EN_L. If EN_L is asserted
(LOW) at the rising edge of the clock, then the flip-flops are loaded from the data
inputs; otherwise, they retain their present values, as shown logically in (b).

74x373

OE

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-11
Logic symbol for the
74x373 8-bit latch.

74x273

CLR

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-12
Logic symbol for the
74x273 8-bit register.

Q

CLK

EN_L

CK

D

8D

8Q

(18)

(19)

(1)

(11)

74x377

EN

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

(a) (b)

Figure 8-13 The 74x377 8-bit register with gated clock:
(a) logic symbol; (b) logical behavior of one bit.

Figure 12: The 74x377 8-bit register with gated clock: (a) logic symbol; (b)
logical behavior of one bit.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 20 / 63

Registers and Latches in Verilog

Table 1: Verilog behavioral module for a D latch.

Tab. 1

We could omit ”else Q <= Q” clause and get the same results
Such code would not say what to do when C is 0, so compiler would
infer a latch
It is better coding style to use an explicit else clause for ”latch closed”
case

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 21 / 63

Registers and Latches in Verilog

Table 2: Behavioral Verilog for a positive-edge-triggered D flip-flop.

To describe edge-triggered behavior in a flip-flop, we need to use
Verilog’s posedge or negedge keyword in sensitivity list of an always

statement

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 22 / 63

Registers and Latches in Verilog

Table 3: Verilog module for a 16-bit register with many features.

Registers can be modeled by defining data inputs and outputs to be
vectors, and additional functions can be included
Tab. 3

Models a 16-bit register with three-state outputs and clock-enable,
output-enable, and clear inputs

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 23 / 63

Sequential PLDs: Bipolar Sequential PLDs
Section 8.3 Sequential PLDs 585

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (11)

(13)

(14)

(15)

(16)

(17)

(18)
D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

O2

(19)
D Q

Q

O1

O3

O4

O5

O6

O7

(13)
D Q

Q

O8

OE_L

CLK

I1

I2

I3

I4

I5

I6

I7

I8

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 8-17 PAL16R8 logic diagram.

Figure 13: PAL16R8 logic diagram.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 24 / 63

Sequential PLDs: Bipolar Sequential PLDs

PAL16R8

It is representative of first generation of sequential PLDs, which used
bipolar (TTL) technology
It has eight primary inputs, eight outputs, and common clock and
output-enable inputs, and fits in a 20-pin package
It has edge-triggered D flip-flops between AND-OR array and its eight
outputs, O1-O8
Each flip-flop drives an output pin through a 3-state buffer
Registered output pins contain complement of signal produced by
AND-OR array
Possible inputs to AND-OR array are eight primary inputs (I1-I8) and
eight D flip-flop outputs
Connection from D flip-flop outputs into AND-OR array makes it easy
to design shift-registers, counters, and general state machines
D flip-flop outputs are available to AND-OR array whether or not
O1-O8 three-state drivers are enabled

Internal flip-flops can go to a next state that is a function of current
state even when O1-O8 outputs are disabled

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 25 / 63

Sequential PLDs: Bipolar Sequential PLDs

Many applications require combinational as well as sequential PLD
outputs

There are a few variants of PAL16R8 without D flip-flops on some
output pins

PAL16R6

It has only six registered outputs
Two pins, IO1 and IO8, are bidirectional

They serve both as inputs and as combinational outputs with separate
3-state enables

Possible inputs to AND-OR array are eight primary inputs (I1-I8), six D
flip-flop outputs, and two bidirectional pins (IO1, IO8)

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 26 / 63

Sequential PLDs: Bipolar Sequential PLDs
586 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

IO1

O2

O3

O4

O5

O6

O7

IO8

OE_L

CLK

I1

I2

I3

I4

I5

I6

I7

I8

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 8-18 PAL16R6 logic diagram.

Figure 14: PAL16R6 logic diagram.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 27 / 63

Sequential PLDs: Sequential GAL Devices

GAL16V8 electrically erasable PLD
Two ”architecture-control” fuses are used to select among three basic
configurations of this device

1 16V8C (”complex”) configuration, which was introduced in
combinational section before

2 16V8S (”simple”) configuration, which provides a slightly different
combinational logic capability

3 16V8R (”registered”) configuration, which allows a flip-flop to be
provided on any or all of outputs

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 28 / 63

Sequential PLDs: Sequential GAL Devices
588 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(15)

(17)
O3

O5

OE_L

CLK

I1

I2

I3

I4

I5

I6

I7

I8

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19)
D Q

Q

O1

(18)
O2

(16)
O4

(14)
O6

(13)
O7

(12)
O8

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 8-20 Logic diagram for the 16V8 in the “registered” configuration.

Figure 15: 16V8R logic diagram.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 29 / 63

Sequential PLDs: Sequential GAL Devices

In Fig. 15

Circuitry inside each dotted box is called an output logic macrocell
Each macrocell may be individually configured to bypass flip-flop to
produce a combinational output
It is possible to program the device to have any set of registered and
combinational outputs, up to eight total Section 8.3 Sequential PLDs 589

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

flip-flops are provided on all outputs. Notice that all of the flip-flops are
controlled by a common clock signal on pin 1, as in the bipolar devices of the
preceding subsection. Likewise, all of the output buffers are controlled by a
common output-enable signal on pin 11.

The circuitry inside each dotted box in Figure 8-20 is called an output logic
macrocell. The 16V8R is much more flexible than a PAL16R8 because each
macrocell may be individually configured to bypass the flip-flop, that is, to
produce a combinational output. Figure 8-21 shows the two macrocell config-
urations that are possible in the 16V8R; (a) is registered and (b) is
combinational. Thus, it is possible to program the device to have any set of
registered and combinational outputs, up to eight total.

The 20V8 is similar to the 16V8, but comes in a 24-pin package with four
extra input-only pins. Each AND gate in the 20V8 has 20 inputs, hence the “20”
in “20V8.”

output logic macrocell

THE “SIMPLE”
16V8S

The “simple” 16V8S configuration of the GAL16V8 is not often used, because its
capabilities are mostly a subset of the 16V8C’s. Instead of an AND term, the 16V8S
uses one fuse per output to control whether the output buffers are enabled. That is,
each output pin may be programmed either to be always enabled or to be always dis-
abled (except pins 15 and 16, which are always enabled). All of the output pins
(except 15 and 16) are available as inputs to the AND array regardless of whether the
output buffer is enabled.

The only advantage of a 16V8S compared to a 16V8C is that it has eight, not
seven, AND terms as inputs to the OR gate on each output. The 16V8S architecture
was designed mainly for emulation of certain now-obsolete bipolar PAL devices,
some of which either had eight product terms per output or had inputs on pins 12 and
19, which are not inputs in the 16V8C configuration. With appropriate program-
ming, the 16V8S can be used as a pin-for-pin compatible replacement for these
devices, which included the PAL10H8, PAL12H6, PAL14H4, PAL16H2,
PAL10L8, PAL12L6, PAL14L4, and PAL16L2.

D Q

Q

CLKOE CLKOE

Registered
output logic macrocell

Combinational
output logic macrocell

(a) (b)

Figure 8-21 Output logic macrocells for the 16V8R: (a) registered; (b) combinational.

20V8

Figure 16: Output logic macrocells for the 16V8R: (a) registered; (b)
combinational.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 30 / 63

Sequential PLDs: Sequential GAL Devices
590 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

(1)
I1/CLK

(2)
I2

(3)
I3

(4)
I4

(5)
I5

(6)
I6

(7)
I7

(8)
I8

(9)
I9

(10)
I10

(11)
I11

(23)
IO1Output

logic
macrocell

8

(22)
IO2Output

logic
macrocell

10

(21)
IO3Output

logic
macrocell

12

(20)
IO4Output

logic
macrocell

14

(19)
IO5Output

logic
macrocell

16

(18)
IO6Output

logic
macrocell

16

(17)
IO7Output

logic
macrocell

14

(16)
IO8Output

logic
macrocell

12

(15)
IO9Output

logic
macrocell

10

(14)
IO10

(13)
I12

Output
logic

macrocell

8

asynchronous reset
(to all macrocells)

synchronous preset
(to all macrocells)

clock (to all macrocells)

Programmable
AND Array
(132 x 44)

Figure 8-22
Logic diagram for
the 22V10.

Figure 17: Logic diagram for the 22V10.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 31 / 63

Sequential PLDs: Sequential GAL Devices

Section 8.3 Sequential PLDs 591

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The 22V10, whose basic structure is shown in Figure 8-22, also comes in a
24-pin package, but is somewhat more flexible than the 20V8. The 22V10 does
not have “architecture control” bits like the 16V8’s and 20V8’s, but it can realize
any function that is realizable with a 20V8, and more. It has more product terms,
two more general-purpose inputs, and better output-enable control than the
20V8. Key differences are summarized below:

• Each output logic macrocell is configurable to have a register or not, as in
the 20V8R architecture. However, the macrocells are different from the
16V8’s and 20V8’s, as shown in Figure 8-23.

• A single product term controls the output buffer, regardless of whether the
registered or the combinational configuration is selected for a macrocell.

• Every output has at least eight product terms available, regardless of
whether the registered or the combinational configuration is selected. Even
more product terms are available on the inner pins, with 16 available on
each of the two innermost pins. (“Innermost” is with respect to the right-
hand side of the Figure 8-22, which also matches the arrangement of these
pins on a 24-pin dual-inline package.)

• The clock signal on pin 1 is also available as a combinational input to any
product term.

• A single product term is available to generate a global, asynchronous reset
signal that resets all internal flip-flops to 0.

• A single product term is available to generate a global, synchronous preset
signal that sets all internal flip-flops to 1 on the rising edge of the clock.

• Like the 16V8 and 20V8, the 22V10 has programmable output polarity.
However, in the registered configuration, the polarity change is made at the
output, rather than the input, of the D flip-flop. This affects the details of
programming when the polarity is changed but does not affect the overall
capability of the 22V10 (i.e., whether a given function can be realized). In
fact, the difference in polarity-change location is transparent when you use
a PLD programming language such as ABEL.

22V10

D Q

Q

ARSP

CLK Registered
output logic macrocell

(a)

8–16

ARSP

CLK Combinational
output logic macrocell

(b)

8–16

Figure 8-23 Output logic macrocells for the 22V10: (a) registered; (b) combinational.

Figure 18: Output logic macrocells for the 22V10: (a) registered; (b)
combinational.

22V10
It does not have ”architecture control” bits like 16V8’s, but it can
realize any function that is realizable with a 16V8, and more
Each output logic macrocell is configurable to have a register or not
A single product term controls output buffer
Every output has at least eight product terms available

More product terms are available on inner pins, with 16 available on
each of two innermost pins

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 32 / 63

Sequential PLDs: Sequential GAL Devices

22V10

Clock signal on pin 1 is also available as a combinational input to any
product term
A single product term is available to generate a global, asynchronous
reset signal that resets all internal flip-flops to 0
A single product term is available to generate a global, synchronous
preset signal that sets all internal flip-flops to 1 on rising edge of clock
It has programmable output polarity

However, in registered configuration, polarity change is made at output
of D flip-flop. This affects details of programming when polarity is
changed but does not affect overall capability of 22V10

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 33 / 63

Counters

A counter is a clocked sequential circuit whose state diagram contains
a single cycle
Modulus of a counter is the number of states in the cycle
A counter with m states is modulo-m counter or a divide-by-m
counter
The most commonly used counter type is an n-bit binary counter

It has n flip-flops and 2n states

Section 8.4 Counters 595

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

8.4 Counters
The name counter is generally used for any clocked sequential circuit whose
state diagram contains a single cycle, as in Figure 8-26. The modulus of a
counter is the number of states in the cycle. A counter with m states is called a
modulo-m counter or, sometimes, a divide-by-m counter. A counter with a non-
power-of-2 modulus has extra states that are not used in normal operation.

HOW MUCH
DOES IT COST?

Once you understand the capabilities of different PLDs, you might ask, “Why not
just always use the most capable PLD available?” For example, even if a circuit fits
in a 20-pin 16V8, why not specify the slightly larger, 24-pin 20V8 so that spare
inputs are available in case of trouble? And, once you’ve specified a 20V8, why not
use the somewhat more capable 22V10 which comes in the same 24-pin package?

In the real world of product design and engineering, the constraint is cost.
Otherwise, the argument of the previous paragraph could be extended ad nauseum,
using CPLDs and FPGAs with even more capability (see \chapref{CPLDsFPGAs}).

Like automobiles and fine wines, digital devices such as PLDs, CPLDs, and
FPGAs are not always priced proportionally to their capabilities and benefits. In
particular, the closer a device’s capability is to the “bleeding edge,” the higher the
premium you can expect to pay. Thus, when selecting a devices to realize a design,
you must evaluate many trade-offs. For example, a high-density, high-cost CPLD or
FPGA may allow a design to be realized in a single device whose internal functions
are easily changed if need be. On the other hand, using two or more lower density
PLDs, CPLDs, or FPGAs may save component cost but increase board area and
power consumption, while making it harder to change the design later (since the
device interconnections must be fixed when the board is fabricated).

What this goes to show is that overall cost must always be considered along
with design elegance and convenience to create a successful (i.e., profitable)
product. And minimizing the cost of a product usually involves a plethora of com-
mon-sense economic and engineering considerations that are far removed from the
turn-the-crank, algorithmic gate minimization methods of Chapter 4.

counter
modulus

S1

Sm

S5

S4

S3

S2
Figure 8-26
General structure
of a counter’s state
diagram—a single
cycle.

modulo-m counter
divide-by-m counter

Figure 19: General structure of a counter’s state diagram—a single cycle.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 34 / 63

Counters: Ripple Counters

An n-bit binary counter can be constructed with just n flip-flops
In Fig. 20, each bit of counter toggles if and only if the immediately
preceding bit changes from 1 to 0

This corresponds to a normal binary counting sequence
When a particular bit changes from 1 to 0, it generates a carry to next
most significant bit596 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Probably the most commonly used counter type is an n-bit binary counter.
Such a counter has n flip-flops and has 2n states, which are visited in the
sequence 0, 1, 2, … , 2n−1, 0, 1, … . Each of these states is encoded as the
corresponding n-bit binary integer.

8.4.1 Ripple Counters
An n-bit binary counter can be constructed with just n flip-flops and no other
components, for any value of n. Figure 8-27 shows such a counter for n = 4.
Recall that a T flip-flop changes state (toggles) on every rising edge of its clock
input. Thus, each bit of the counter toggles if and only if the immediately
preceding bit changes from 1 to 0. This corresponds to a normal binary counting
sequence—when a particular bit changes from 1 to 0, it generates a carry to the
next most significant bit. The counter is called a ripple counter because the carry
information ripples from the less significant bits to the more significant bits, one
bit at a time.

8.4.2 Synchronous Counters
Although a ripple counter requires fewer components than any other type of
binary counter, it does so at a price—it is slower than any other type of binary
counter. In the worst case, when the most significant bit must change, the output
is not valid until time n ⋅ tTQ after the rising edge of CLK, where tTQ is the
propagation delay from input to output of a T flip-flop.

A synchronous counter connects all of its flip-flop clock inputs to the same
common CLK signal, so that all of the flip-flop outputs change at the same time,
after only tTQ ns of delay. As shown in Figure 8-28, this requires the use of
T flip-flops with enable inputs; the output toggles on the rising edge of T if and
only if EN is asserted. Combinational logic on the EN inputs determines which,
if any, flip-flops toggle on each rising edge of T.

n-bit binary counter

Q

Q
TCLK

T

T

T

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Figure 8-27
A 4-bit binary
ripple counter.

ripple counter

synchronous counter

Figure 20: A 4-bit binary ripple counter.
Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 35 / 63

Counters: Synchronous Counters

A ripple counter requires fewer components than any other type of
binary counter

But it is slower than any other type of binary counter

A synchronous counter uses T flip-flops with enable inputs Section 8.4 Counters 597

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

As shown in Figure 8-28, it is also possible to provide a master count-
enable signal CNTEN. Each T flip-flop toggles if and only if CNTEN is asserted
and all of the lower-order counter bits are 1. Like the binary ripple counter, a
synchronous n-bit binary counter can be built with a fixed amount of logic per
bit—in this case, a T flip-flop with enable and a 2-input AND gate.

The counter structure in Figure 8-28 is sometimes called a synchronous
serial counter because the combinational enable signals propagate serially from
the least significant to the most significant bits. If the clock period is too short,
there may not be enough time for a change in the counter’s LSB to propagate to
the MSB. This problem is eliminated in Figure 8-29 by driving each EN input
with a dedicated AND gate, just a single level of logic. Called a synchronous
parallel counter, this is the fastest binary counter structure.

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

Figure 8-28
A synchronous 4-bit
binary counter with
serial enable logic.

synchronous serial
counter

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

Figure 8-29
A synchronous 4-bit
binary counter with
parallel enable logic

synchronous parallel
counter

Figure 21: A synchronous 4-bit binary counter with serial enable logic.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 36 / 63

Counters: Synchronous Counters

In Fig. 21
All of flip-flop clock inputs are connected to same common CLK signal

All of flip-flop outputs change at same time

CNTEN is a master count-enable signal
Each T flip-flop toggles if and only if CNTEN is asserted and all of
lower-order counter bits are 1
It is called a synchronous serial counter because combinational enable
signals propagate serially from least significant to most significant bits
If clock period is too short, there may not be enough time for a change
in counter’s LSB to propagate to MSB
This problem is eliminated in synchronous parallel counters

A synchronous parallel counter is the fastest binary counter structure

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 37 / 63

Counters: Synchronous Counters

Section 8.4 Counters 597

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

As shown in Figure 8-28, it is also possible to provide a master count-
enable signal CNTEN. Each T flip-flop toggles if and only if CNTEN is asserted
and all of the lower-order counter bits are 1. Like the binary ripple counter, a
synchronous n-bit binary counter can be built with a fixed amount of logic per
bit—in this case, a T flip-flop with enable and a 2-input AND gate.

The counter structure in Figure 8-28 is sometimes called a synchronous
serial counter because the combinational enable signals propagate serially from
the least significant to the most significant bits. If the clock period is too short,
there may not be enough time for a change in the counter’s LSB to propagate to
the MSB. This problem is eliminated in Figure 8-29 by driving each EN input
with a dedicated AND gate, just a single level of logic. Called a synchronous
parallel counter, this is the fastest binary counter structure.

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

Figure 8-28
A synchronous 4-bit
binary counter with
serial enable logic.

synchronous serial
counter

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

Figure 8-29
A synchronous 4-bit
binary counter with
parallel enable logic

synchronous parallel
counter

Figure 22: A synchronous 4-bit binary counter with parallel enable logic.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 38 / 63

Counters: MSI Counters and Applications

The most popular MSI counter is 74x163, a synchronous 4-bit binary
counter with active-low load and clear inputs

598 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

8.4.3 MSI Counters and Applications
The most popular MSI counter is the 74x163, a synchronous 4-bit binary counter
with active-low load and clear inputs, with the traditional logic symbol shown in
Figure 8-30. Its function is summarized by the state table in Table 8-11, and its
internal logic diagram is shown in Figure 8-31.

The ’163 uses D flip-flops rather than T flip-flops internally to facilitate the
load and clear functions. Each D input is driven by a 2-input multiplexer consist-
ing of an OR gate and two AND gates. The multiplexer output is 0 if the CLR_L
input is asserted. Otherwise, the top AND gate passes the data input (A, B, C,
or D) to the output if LD_L is asserted. If neither CLR_L nor LD_L is asserted, the
bottom AND gate passes the output of an XNOR gate to the multiplexer output.

Ta b l e 8 - 1 1 State table for a 74x163 4-bit binary counter.

Inputs Current State Next State

CLR_L LD_L ENT ENP QD QC QB QA QD ∗ QC∗ QB∗ QA∗

0 x x x x x x x 0 0 0 0

1 0 x x x x x x D C B A

 1 1 0 x x x x x QD QC QB QA

 1 1 x 0 x x x x QD QC QB QA

 1 1 1 1 0 0 0 0 0 0 0 1

 1 1 1 1 0 0 0 1 0 0 1 0

 1 1 1 1 0 0 1 0 0 0 1 1

 1 1 1 1 0 0 1 1 0 1 0 0

 1 1 1 1 0 1 0 0 0 1 0 1

 1 1 1 1 0 1 0 1 0 1 1 0

 1 1 1 1 0 1 1 0 0 1 1 1

 1 1 1 1 0 1 1 1 1 0 0 0

 1 1 1 1 1 0 0 0 1 0 0 1

 1 1 1 1 1 0 0 1 1 0 1 0

 1 1 1 1 1 0 1 0 1 0 1 1

 1 1 1 1 1 0 1 1 1 1 0 0

 1 1 1 1 1 1 0 0 1 1 0 1

 1 1 1 1 1 1 0 1 1 1 1 0

 1 1 1 1 1 1 1 0 1 1 1 1

 1 1 1 1 1 1 1 1 0 0 0 0

74x163

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-30
Traditional logic
symbol for
the 74x163.

Figure 23: Traditional logic symbol for the 74x163.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 39 / 63

Counters: MSI Counters and Applications

Table 4: State table for a 74x163 4-bit binary counter.

Inputs Current State Next State

CLR L LD L ENT ENP QD QC QB QA QD∗ QC∗ QB∗ QA∗
0 x x x x x x x 0 0 0 0
1 0 x x x x x x D C B A
1 1 0 x x x x x QD QC QB QA
1 1 x 0 x x x x QD QC QB QA
1 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 1 0 0 1 0
1 1 1 1 0 0 1 0 0 0 1 1
1 1 1 1 0 0 1 1 0 1 0 0
1 1 1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 1 0 1 0 1 1 0
1 1 1 1 0 1 1 0 0 1 1 1
1 1 1 1 0 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 1 0 0 1
1 1 1 1 1 0 0 1 1 0 1 0
1 1 1 1 1 0 1 0 1 0 1 1
1 1 1 1 1 0 1 1 1 1 0 0
1 1 1 1 1 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 40 / 63

Counters: MSI Counters and Applications
Section 8.4 Counters 599

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Q

Q

CLK

CK

D QA
(14)

Q

QCK

D QB
(13)

Q

QCK

D QC
(12)

Q

QCK

D QD
(11)

RCO
(15)

(6)
D

(7)
ENP

(10)
ENT

(5)
C

(4)
B

(3)
A

(1)
CLR_L

(9)

(2)

LD_L

Figure 8-31 Logic diagram for the 74x163 synchronous 4-bit binary counter,
including pin numbers for a standard 16-pin dual in-line package.Figure 24: Logic diagram for the 74x163 synchronous 4-bit binary counter,

including pin numbers for a standard 16-pin dual in-line package.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 41 / 63

Counters: MSI Counters and Applications

74x163

It uses D rather than T flip-flops to facilitate load and clear functions
Each D input is driven by a 2-input multiplexer consisting of an OR gate
and two AND gates
Multiplexer output is 0 if CLR L input is asserted, otherwise, top AND
gate passes data input (A, B, C, or D) to output if LD L is asserted
If neither CLR L nor LD L is asserted, bottom AND gate passes output
of an XNOR gate to multiplexer output
XNOR gates perform counting function

One input of each XNOR is the corresponding count bit (QA, QB, QC,
or QD)
Other input is 1, which complements count bit, if and only if both
enables ENP and ENT are asserted and all of lower-order count bits are 1

RCO (ripple carry out) signal indicates a carry from most significant bit
position

It is 1 when all of count bits are 1 and ENT is asserted

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 42 / 63

Counters: MSI Counters and Applications

Even though most MSI counters have enable inputs, they are often
used in a free-running mode in which they are enabled countinuously600 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The XNOR gates perform the counting function in the ’163. One input of
each XNOR is the corresponding count bit (QA, QB, QC, or QD); the other input
is 1, which complements the count bit, if and only if both enables ENP and ENT
are asserted and all of the lower-order count bits are 1. The RCO (“ripple carry
out”) signal indicates a carry from the most significant bit position, and is 1
when all of the count bits are 1 and ENT is asserted.

Even though most MSI counters have enable inputs, they are often used in
a free-running mode in which they are enabled continuously. Figure 8-32 shows
the connections to make a ’163 operate in this way, and Figure 8-33 shows the
resulting output waveforms. Notice that starting with QA, each signal has half
the frequency of the preceding one. Thus, a free-running ’163 can be used as a
divide-by-2, -4, -8, or -16 counter, by ignoring any unnecessary high-order
output bits.

Note that the ’163 is fully synchronous; that is, its outputs change only on
the rising edge of CLK. Some applications need an asynchronous clear function,

free-running counter

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A QA

QB

QC

QD

RCO

B

3

4

C

D

5

6
QC

QD
15

RCO

U1

13

12

CLOCK

RPU
+5 V

R

Figure 8-32
Connections for the
74x163 to operate in
a free-running mode.

CLK

QA

QB

QC

QD

COUNT 0 1 2 8 9 10 11 12 13 14 15 03 4 5 6 7

RCO

Figure 8-33 Clock and output waveforms for a free-running divide-by-16 counter.

Figure 25: Connections for the 74x163 to operate in a free-running mode.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 43 / 63

Counters: MSI Counters and Applications

Fig. 26 shows resulting output waveforms for a free-running ’163

Starting with QA, each signal has half frequency of preceding one
A free-running ’163 can be used as a divide-by-2, -4, -8, or -16 counter,
by ignoring any unnecessary high-order output bits

600 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The XNOR gates perform the counting function in the ’163. One input of
each XNOR is the corresponding count bit (QA, QB, QC, or QD); the other input
is 1, which complements the count bit, if and only if both enables ENP and ENT
are asserted and all of the lower-order count bits are 1. The RCO (“ripple carry
out”) signal indicates a carry from the most significant bit position, and is 1
when all of the count bits are 1 and ENT is asserted.

Even though most MSI counters have enable inputs, they are often used in
a free-running mode in which they are enabled continuously. Figure 8-32 shows
the connections to make a ’163 operate in this way, and Figure 8-33 shows the
resulting output waveforms. Notice that starting with QA, each signal has half
the frequency of the preceding one. Thus, a free-running ’163 can be used as a
divide-by-2, -4, -8, or -16 counter, by ignoring any unnecessary high-order
output bits.

Note that the ’163 is fully synchronous; that is, its outputs change only on
the rising edge of CLK. Some applications need an asynchronous clear function,

free-running counter

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A QA

QB

QC

QD

RCO

B

3

4

C

D

5

6
QC

QD
15

RCO

U1

13

12

CLOCK

RPU
+5 V

R

Figure 8-32
Connections for the
74x163 to operate in
a free-running mode.

CLK

QA

QB

QC

QD

COUNT 0 1 2 8 9 10 11 12 13 14 15 03 4 5 6 7

RCO

Figure 8-33 Clock and output waveforms for a free-running divide-by-16 counter.

Figure 26: Clock and output waveforms for a free-running divide-by-16 counter.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 44 / 63

Counters: MSI Counters and Applications

’163 is fully synchronous
Its outputs change only on rising edge of CLK
74x161 has same pinout but provides an asynchronous clear function; its
CLR L input is connected to asynchronous clear inputs of its flip-flops

74x160 and 74x162 have same pinouts and functions as ’161 and ’163
Except that counting sequence is modified to go to state 0 after state 9
These are modulo-10 counters, called decade countersSection 8.4 Counters 601

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

as provided by the 74x161. The ’161 has the same pinout as the ’163, but its
CLR_L input is connected to the asynchronous clear inputs of its flip-flops.

The 74x160 and 74x162 are more variations with the same pinouts and
general functions as the ’161 and ’163, except that the counting sequence is
modified to go to state 0 after state 9. In other words, these are modulo-10
counters, sometimes called decade counters. Figure 8-34 shows the output
waveforms for a free-running ’160 or ’162. Notice that although the QD and QC
outputs have one-tenth of the CLK frequency, they do not have a 50% duty cycle,
and the QC output, with one-fifth of the input frequency, does not have a
constant duty cycle. We’ll show the design of a divide-by-10 counter with a 50%
duty-cycle output later in this subsection.

Although the ’163 is a modulo-16 counter, it can be made to count in a
modulus less than 16 by using the CLR_L or LD_L input to shorten the normal
counting sequence. For example, Figure 8-35 shows one way of using the ’163
as a modulo-11 counter. The RCO output, which detects state 15, is used to force

74x161

74x160
74x162

decade counter

CLOCK

QA

QB

QC

QD

COUNT 0 1 2 8 9 03 4 5 6 7

RCO

Figure 8-34 Clock and output waveforms for a free-running divide-by-10 counter.

74x163

74x04

CLR

CLK

LD

QA

QB

2

14

11

1

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

2
RCO

13

12

CNT15

CNT15_L
U1 U2

CLOCK
RPU

+5 V

R

Figure 8-35
Using the 74x163 as
a modulo-11 counter
with the counting
sequence 5, 6, …, 15,
5, 6, ….

Figure 27: Clock and output waveforms for a free-running divide-by-10 counter.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 45 / 63

Counters: MSI Counters and Applications

In Fig. 27, although QD and QC outputs have one-tenth of CLK
frequency, they do not have a 50% duty cycle
’163 is a modulo-16 counter, but it can be made to count in a
modulus less than 16

Use CLR L or LD L input to shorten normal counting sequence

Section 8.4 Counters 601

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

as provided by the 74x161. The ’161 has the same pinout as the ’163, but its
CLR_L input is connected to the asynchronous clear inputs of its flip-flops.

The 74x160 and 74x162 are more variations with the same pinouts and
general functions as the ’161 and ’163, except that the counting sequence is
modified to go to state 0 after state 9. In other words, these are modulo-10
counters, sometimes called decade counters. Figure 8-34 shows the output
waveforms for a free-running ’160 or ’162. Notice that although the QD and QC
outputs have one-tenth of the CLK frequency, they do not have a 50% duty cycle,
and the QC output, with one-fifth of the input frequency, does not have a
constant duty cycle. We’ll show the design of a divide-by-10 counter with a 50%
duty-cycle output later in this subsection.

Although the ’163 is a modulo-16 counter, it can be made to count in a
modulus less than 16 by using the CLR_L or LD_L input to shorten the normal
counting sequence. For example, Figure 8-35 shows one way of using the ’163
as a modulo-11 counter. The RCO output, which detects state 15, is used to force

74x161

74x160
74x162

decade counter

CLOCK

QA

QB

QC

QD

COUNT 0 1 2 8 9 03 4 5 6 7

RCO

Figure 8-34 Clock and output waveforms for a free-running divide-by-10 counter.

74x163

74x04

CLR

CLK

LD

QA

QB

2

14

11

1

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

2
RCO

13

12

CNT15

CNT15_L
U1 U2

CLOCK
RPU

+5 V

R

Figure 8-35
Using the 74x163 as
a modulo-11 counter
with the counting
sequence 5, 6, …, 15,
5, 6, ….

Figure 28: Using the 74x163 as a modulo-11 counter with the counting
sequence 5, 6, . . . , 15, 5, 6,

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 46 / 63

Counters: MSI Counters and Applications

Fig. 28 shows one way of using ’163 as a modulo-11 counter
RCO output, which detects state 15, is used to force next state to 5
Circuit counts from 5 to 15, for a total of 11 states per counting cycle

Fig. 29 shows a different approach for modulo-11 counting with ’163602 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

the next state to 5, so that the circuit will count from 5 to 15 and then start at 5
again, for a total of 11 states per counting cycle.

A different approach for modulo-11 counting with the ’163 is shown in
Figure 8-36. This circuit uses a NAND gate to detect state 10 and force the next
state to 0. Notice that only a 2-input gate is used to detect state 10 (binary 1010).
Although a 4-input gate would normally be used to detect the condition CNT10
= Q3 ⋅ Q2′ ⋅ Q1 ⋅ Q0′, the 2-input gate takes advantage of the fact that no other
state in the normal counting sequence of 0–10 has Q3 = 1 and Q1 = 1. In general,
to detect state N in a binary counter that counts from 0 to N, we need to AND
only the state bits that are 1 in the binary encoding of N.

There are many other ways to make a modulo-11 counter using a ’163. The
choice of approach—one of the preceding or a combination of them (as in
Exercise 8.25)—depends on the application. As another example, in
Section 2.10 we promised to show you how to build a circuit that counts in the

74x163

74x00

CLR

CLK

LD

QA

QB

2

14

11

1

1

2

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

3

RCO

13

12

CNT10_L

U1

U2

CLOCK

RPU
+5 V

R

Figure 8-36
Using the 74x163 as
a modulo-11 counter
with the counting
sequence 0, 1, 2, …,
10, 0, 1, ….

74x163

74x00

CLR

CLK

LD

QA

QB

2

14

11

1

1

2

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

C

D

QC

QD
15

3

RCO

13

12

S11XX_L

U1

U2

+5 V

CLOCK

RPU
R

3

4

5

6

Figure 8-37
A 74x163 used as an
excess-3 decimal
counter.

Figure 29: Using the 74x163 as a modulo-11 counter with the counting
sequence 0, 1, 2, . . . , 10, 0, 1,

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 47 / 63

Counters: MSI Counters and Applications

In general, to detect state N in a binary counter that counts from 0 to
N, we need to AND only state bits that are 1 in binary encoding of N
Excess-3 code word for each decimal digit is the corresponding BCD
code word plus 00112

Because excess-3 code words follow a standard binary counting
sequence, standard binary counters can easily be made to count in
excess-3 code

Table 5: Decimal codes.

Decimal digit BCD (8421) Excess-3

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 48 / 63

Counters: MSI Counters and Applications

In Fig. 30, a NAND gate detects state 1100 and forces 0011 to be
loaded as next state

602 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

the next state to 5, so that the circuit will count from 5 to 15 and then start at 5
again, for a total of 11 states per counting cycle.

A different approach for modulo-11 counting with the ’163 is shown in
Figure 8-36. This circuit uses a NAND gate to detect state 10 and force the next
state to 0. Notice that only a 2-input gate is used to detect state 10 (binary 1010).
Although a 4-input gate would normally be used to detect the condition CNT10
= Q3 ⋅ Q2′ ⋅ Q1 ⋅ Q0′, the 2-input gate takes advantage of the fact that no other
state in the normal counting sequence of 0–10 has Q3 = 1 and Q1 = 1. In general,
to detect state N in a binary counter that counts from 0 to N, we need to AND
only the state bits that are 1 in the binary encoding of N.

There are many other ways to make a modulo-11 counter using a ’163. The
choice of approach—one of the preceding or a combination of them (as in
Exercise 8.25)—depends on the application. As another example, in
Section 2.10 we promised to show you how to build a circuit that counts in the

74x163

74x00

CLR

CLK

LD

QA

QB

2

14

11

1

1

2

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

3

RCO

13

12

CNT10_L

U1

U2

CLOCK

RPU
+5 V

R

Figure 8-36
Using the 74x163 as
a modulo-11 counter
with the counting
sequence 0, 1, 2, …,
10, 0, 1, ….

74x163

74x00

CLR

CLK

LD

QA

QB

2

14

11

1

1

2

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

C

D

QC

QD
15

3

RCO

13

12

S11XX_L

U1

U2

+5 V

CLOCK

RPU
R

3

4

5

6

Figure 8-37
A 74x163 used as an
excess-3 decimal
counter.

Figure 30: A 74x163 used as an excess-3 decimal counter.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 49 / 63

Counters: MSI Counters and Applications

In Fig. 31, Q3 output has a 50% duty cycle, which may be desirable
for some applications

Section 8.4 Counters 603

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

excess-3 decimal code, shown in Table 2-9 on page 45. Figure 8-37 shows the
connections for a ’163 to count in the excess-3 sequence. A NAND gate detects
state 1100 and forces 0011 to be loaded as the next state. Figure 8-38 shows the
resulting timing waveforms. Notice that the Q3 output has a 50% duty cycle,
which may be desirable for some applications.

A binary counter with a modulus greater than 16 can be built by cascading
74x163s. Figure 8-39 shows the general connections for such a counter. The
CLK, CLR_L, and LD_L inputs of all the ’163s are connected in parallel, so that
all of them count or are cleared or loaded at the same time. A master count-
enable (CNTEN) signal is connected to the low-order ’163. The RCO4 output is
asserted if and only if the low-order ’163 is in state 15 and CNTEN is asserted;
RCO4 is connected to the enable inputs of the high-order ’163. Thus, both the
carry information and the master count-enable ripple from the output of one

CLOCK

Q0

Q1

Q2

Q3

COUNT 11 12 38 9 103 4 5 6 7

Figure 8-38 Timing waveforms for the ’163 used as an excess-3 decimal counter.

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6

Q4

Q5

Q6

Q7

RCO8

QC

QD
15

RCO

13

12

U1

74x163

CLR

CLK

LD

QA

QB

2

1

9

14

11

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U2

CLOCK

RESET_L

D0

D1

D2

D3

D4

D5

D6

D7

LOAD_L

CNTEN

RCO4

Figure 8-39 General cascading connections for 74x163-based counters.

Figure 31: Timing waveforms for the ’163 used as an excess-3 decimal counter.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 50 / 63

Counters: MSI Counters and Applications

A binary counter with a modulus greater than 16 can be built by
cascading 74x163s as in Fig. 32

In Fig. 32, RCO4 output is asserted if and only if low-order ’163 is in
state 15 and CNTEN, master count-enable, is asserted
Scheme of Fig. 32 can be extended to build a counter with any desired
number of bits

Section 8.4 Counters 603

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

excess-3 decimal code, shown in Table 2-9 on page 45. Figure 8-37 shows the
connections for a ’163 to count in the excess-3 sequence. A NAND gate detects
state 1100 and forces 0011 to be loaded as the next state. Figure 8-38 shows the
resulting timing waveforms. Notice that the Q3 output has a 50% duty cycle,
which may be desirable for some applications.

A binary counter with a modulus greater than 16 can be built by cascading
74x163s. Figure 8-39 shows the general connections for such a counter. The
CLK, CLR_L, and LD_L inputs of all the ’163s are connected in parallel, so that
all of them count or are cleared or loaded at the same time. A master count-
enable (CNTEN) signal is connected to the low-order ’163. The RCO4 output is
asserted if and only if the low-order ’163 is in state 15 and CNTEN is asserted;
RCO4 is connected to the enable inputs of the high-order ’163. Thus, both the
carry information and the master count-enable ripple from the output of one

CLOCK

Q0

Q1

Q2

Q3

COUNT 11 12 38 9 103 4 5 6 7

Figure 8-38 Timing waveforms for the ’163 used as an excess-3 decimal counter.

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6

Q4

Q5

Q6

Q7

RCO8

QC

QD
15

RCO

13

12

U1

74x163

CLR

CLK

LD

QA

QB

2

1

9

14

11

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U2

CLOCK

RESET_L

D0

D1

D2

D3

D4

D5

D6

D7

LOAD_L

CNTEN

RCO4

Figure 8-39 General cascading connections for 74x163-based counters.

Figure 32: General cascading connections for 74x163-based counters.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 51 / 63

Counters: MSI Counters and Applications

604 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

4-bit counter stage to the next. Like the synchronous serial counter of
Figure 8-28, this scheme can be extended to build a counter with any desired
number of bits; the maximum counting speed is limited by the propagation delay
of the ripple carry signal through all of the stages (but see Exercise 8.27).

Even experienced digital designers are sometimes confused about the
difference between the ENP and ENT enable inputs of the ’163 and similar
counters, since both must be asserted for the counter to count. However, a
glance at the 163’s internal logic diagram, Figure 8-31 on page 599, shows the
difference quite clearly—ENT goes to the ripple carry output as well. In many
applications, this distinction is important.

For example, Figure 8-40 shows an application that uses two ’163s as a
modulo-193 counter that counts from 63 to 255. The MAXCNT output detects
state 255 and stops the counter until GO_L is asserted. When GO_L is asserted,
the counter is reloaded with 63 and counts up to 255 again. (Note that the value
of GO_L is relevant only when the counter is in state 255.) To keep the counter

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

6

C

D

5

4

5

3
1

2

6

Q4

Q5

Q6

Q7

MAXCNT

QC

QD
15

RCO

13

12

U2

U1

U1

74x163

CLR

CLK

LD

QA

QB

2

14

11

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U3

CLOCK

RESET_L

GO_L

RELOAD_L

CNTEN

RPU

74x00

74x00

+5 V

R

RCO4

Figure 33: Using 74x163s as a modulo-193 counter with the counting sequence
63, 64, . . . , 255, 63, 64,

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 52 / 63

Counters: MSI Counters and Applications

Fig. 33

It is a modulo-193 counter that counts from 63 to 255
MAXCNT output detects state 255 and stops counter until GO L is
asserted
When GO L is asserted, counter is reloaded with 63 and counts up to
255 again

Value of GO L is relevant only when counter is in state 255

To keep counter stopped, MAXCNT must be asserted in state 255 even
while counter is stopped

In Fig. 24, both ENP and ENT enable inputs must be asserted for
counter to count. However, ENT goes to ripple carry output as well
Therefore, in Fig. 33, low-order counter’s ENT input is always asserted,
its RCO output is connected to high-order ENT input, and MAXCNT
detects state 255 even if CNTEN is not asserted

To enable counting, CNTEN is connected to ENP inputs in parallel
A NAND gate asserts RELOAD L to go back to state 63 only if GO L is
asserted and counter is in state 255

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 53 / 63

Counters: MSI Counters and Applications

Another counter with functions similar to 74x163’s is 74x169
’169 is an up/down counter
It counts in ascending or descending binary order depending on value of
an input signal, UP/DN
’169 counts up when UP/DN is 1 and down when UP/DN is 0

Section 8.4 Counters 605

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

stopped, MAXCNT must be asserted in state 255 even while the counter is
stopped. Therefore, the low-order counter’s ENT input is always asserted, its
RCO output is connected to the high-order ENT input, and MAXCNT detects
state 255 even if CNTEN is not asserted (compare with the behavior of RCO8 in
Figure 8-39). To enable counting, CNTEN is connected to the ENP inputs in
parallel. A NAND gate asserts RELOAD_L to go back to state 63 only if GO_L is
asserted and the counter is in state 255.

Another counter with functions similar to 74x163’s is the 74x169, whose
logic symbol is shown in Figure 8-41. One difference in the ’169 is that its carry
output and enable inputs are active low. More importantly, the ’169 is an up/
down counter; it counts in ascending or descending binary order depending on
the value of an input signal, UP/DN. The ’169 counts up when UP/DN is 1 and
down when UP/DN is 0.

8.4.4 Decoding Binary-Counter States
A binary counter may be combined with a decoder to obtain a set of 1-out-of-m-
coded signals, where one signal is asserted in each counter state. This is useful
when counters are used to control a set of devices where a different device is
enabled in each counter state. In this approach, each output of the decoder
enables a different device.

Figure 8-42 shows how a 74x163 wired as a modulo-8 counter can be com-
bined with a 74x138 3-to-8 decoder to provide eight signals, each one
representing a counter state. Figure 8-43 shows typical timing for this circuit.
Each decoder output is asserted during a corresponding clock period.

Notice that the decoder outputs may contain “glitches” on state transitions
where two or more counter bits change, even though the ’163 outputs are glitch
free and the ’138 does not have any static hazards. In a synchronous counter like
the ’163, the outputs don’t change at exactly the same time. More important,

74x169

74x169

UP/DN

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-41
Logic symbol for the
74x169 up/down
counter.

up/down counter

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A
Q1

Q2

Q3
B

3

4

C

D

5

6
QC

QD
15

RCO
U1

13

12

CLOCK

RPU
+5 V

R

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2

Figure 8-42
A modulo-8 binary
counter and decoder.

decoding glitches

Figure 34: Logic symbol for the 74x169 up/down counter.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 54 / 63

Counters: Decoding Binary-Counter States

A binary counter may be combined with a decoder to obtain a set of
1-out-of-m-coded signals, where one signal is asserted in each counter
state

This is useful when counters are used to control a set of devices where a
different device is enabled in each counter state

Section 8.4 Counters 605

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

stopped, MAXCNT must be asserted in state 255 even while the counter is
stopped. Therefore, the low-order counter’s ENT input is always asserted, its
RCO output is connected to the high-order ENT input, and MAXCNT detects
state 255 even if CNTEN is not asserted (compare with the behavior of RCO8 in
Figure 8-39). To enable counting, CNTEN is connected to the ENP inputs in
parallel. A NAND gate asserts RELOAD_L to go back to state 63 only if GO_L is
asserted and the counter is in state 255.

Another counter with functions similar to 74x163’s is the 74x169, whose
logic symbol is shown in Figure 8-41. One difference in the ’169 is that its carry
output and enable inputs are active low. More importantly, the ’169 is an up/
down counter; it counts in ascending or descending binary order depending on
the value of an input signal, UP/DN. The ’169 counts up when UP/DN is 1 and
down when UP/DN is 0.

8.4.4 Decoding Binary-Counter States
A binary counter may be combined with a decoder to obtain a set of 1-out-of-m-
coded signals, where one signal is asserted in each counter state. This is useful
when counters are used to control a set of devices where a different device is
enabled in each counter state. In this approach, each output of the decoder
enables a different device.

Figure 8-42 shows how a 74x163 wired as a modulo-8 counter can be com-
bined with a 74x138 3-to-8 decoder to provide eight signals, each one
representing a counter state. Figure 8-43 shows typical timing for this circuit.
Each decoder output is asserted during a corresponding clock period.

Notice that the decoder outputs may contain “glitches” on state transitions
where two or more counter bits change, even though the ’163 outputs are glitch
free and the ’138 does not have any static hazards. In a synchronous counter like
the ’163, the outputs don’t change at exactly the same time. More important,

74x169

74x169

UP/DN

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-41
Logic symbol for the
74x169 up/down
counter.

up/down counter

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A
Q1

Q2

Q3
B

3

4

C

D

5

6
QC

QD
15

RCO
U1

13

12

CLOCK

RPU
+5 V

R

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2

Figure 8-42
A modulo-8 binary
counter and decoder.

decoding glitches

Figure 35: A modulo-8 binary counter and decoder.
Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 55 / 63

Counters: Decoding Binary-Counter States
606 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

multiple signal paths in a decoder like the ’138 have different delays; for exam-
ple, the path from B to Y1_L is faster than the path from A to Y1_L. Thus, even if
the input changes simultaneously from 011 to 100, the decoder may behave as if
the input were temporarily 001, and the Y1_L output may have a glitch. In the
present example, it can be shown that the glitches can occur in any realization of
the binary decoder function; this problem is an example of a function hazard.

In most applications, the decoder output signals portrayed in Figure 8-43
would be used as control inputs to registers, counters, and other edge-triggered
devices (e.g., EN_L in a 74x377, LD_L in a 74x163, or ENP_L in a 74x169). In
such a case, the decoding glitches in the figure are not a problem, since they
occur after the clock tick. They are long gone before the next tick comes along,
when the decoder outputs are sampled by other edge-triggered devices.
However, the glitches would be a problem if they were applied to something like
the S_L or R_L inputs of an S-R latch. Likewise, using such potentially glitchy
signals as clocks for edge-triggered devices is a definite no-no.

If necessary, one way to “clean up” the glitches in Figure 8-43 is to connect
the ’138 outputs to another register that samples the stable decoded outputs on
the next clock tick, as shown in Figure 8-44. Notice that the decoded outputs
have been renamed to account for the 1-tick delay through the register. However,
once you decide to pay for an 8-bit register, a less costly solution is to use an
8-bit “ring counter,” which provides glitch-free decoded outputs directly, as
we’ll show in Section 8.5.6.

CLOCK_L

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

COUNT 0 21 0 1 23 4 5 6 7

Figure 8-43 Timing diagram for a modulo-8 binary counter and decoder,
showing decoding glitches.

function hazard

Figure 36: Timing diagram for a modulo-8 binary counter and decoder,
showing decoding glitches.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 56 / 63

Counters: Decoding Binary-Counter States

Fig. 36

Decoder outputs may contain glitches on state transitions where two or
more counter bits change, even though ’163 outputs are glitch free and
’138 does not have any static hazards
In a synchronous counter like ’163, outputs don’t change at exactly the
same time

Also, multiple signal paths in a decoder like ’138 have different delays
E.g., path from B to Y1 L is faster than path from A to Y1 L
Thus, even if input changes simultaneously from 011 to 100, decoder
may behave as if input were temporarily 001, and Y1 L output may have
a glitch

In most applications, decoder output signals are used as control inputs
to registers, counters, and other edge-triggered devices

In such a case, decoding glitches are not a problem
They occur after clock tick

Glitches would be a problem if they were applied to something like
inputs of an S − R latch

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 57 / 63

Counters: Decoding Binary-Counter States

One way to clean up glitches in Fig. 36 is to connect ’138 outputs to
another register that samples stable decoded outputs on next clock
tick

A less costly solution is to use an 8-bit ”ring counter” which provides
glitch-free decoded outputs directly Section 8.4 Counters 607

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

8.4.5 Counters in ABEL and PLDs
Binary counters are good candidates for ABEL- and PLD-based design, for
several reasons:

• A large state machine can often be decomposed into two or more smaller
state machines where one of the smaller machines is a binary counter that
keeps track of how long the other machine should stay in a particular state.
This may simplify both the conceptual design and the circuit design of the
machine.

• Many applications require almost-binary-modulus counters with special
requirements for initialization, state detection, or state skipping. For exam-
ple, a counter in an elevator controller may skip state 13. Instead of using
an off-the-shelf binary counter and extra logic for the special requirements,
a designer can specify exactly the required functions in an ABEL program.

• Most standard MSI counters have only 4 bits, while a single 24-pin PLD
can be used to create a binary counter with up to 10 bits.

The most popular MSI counter is the 74x163 4-bit binary counter, shown in
Figure 8-31 on page 599. A glance at this figure shows that the excitation logic
for this counter isn’t exactly simple, especially considering its use of XNOR
gates. Nevertheless, ABEL provides a very simple way of defining counter
behavior, which we describe next.

Recall that ABEL uses the “+” symbol to specify integer addition. When
two sets are “added” with this operator, each is interpreted as a binary number;
the rightmost set element corresponds to the least significant bit of the number.
Thus, the function of a 74x163 can be specified by the ABEL program in
Table 8-12. When the counter is enabled, 1 is added to the current state.

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A
Q1

Q2

Q3
B

3

4

C

D

5

6
QC

QD
15

RCO
U1

13

12

CLOCK

RPU +5 V

R

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L
RS0_L

RS1_L

RS2_L

RS3_L

RS4_L

RS5_L

RS6_L

RS7_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2 U3

74x374

OE

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-44 A modulo-8 binary counter and decoder with glitch-free outputs. Figure 37: A modulo-8 binary counter and decoder with glitch-free outputs.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 58 / 63

Counters in Verilog

Table 6: Verilog module for a 74x163-like 4-bit binary counter.

598 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

8.4.3 MSI Counters and Applications
The most popular MSI counter is the 74x163, a synchronous 4-bit binary counter
with active-low load and clear inputs, with the traditional logic symbol shown in
Figure 8-30. Its function is summarized by the state table in Table 8-11, and its
internal logic diagram is shown in Figure 8-31.

The ’163 uses D flip-flops rather than T flip-flops internally to facilitate the
load and clear functions. Each D input is driven by a 2-input multiplexer consist-
ing of an OR gate and two AND gates. The multiplexer output is 0 if the CLR_L
input is asserted. Otherwise, the top AND gate passes the data input (A, B, C,
or D) to the output if LD_L is asserted. If neither CLR_L nor LD_L is asserted, the
bottom AND gate passes the output of an XNOR gate to the multiplexer output.

Ta b l e 8 - 1 1 State table for a 74x163 4-bit binary counter.

Inputs Current State Next State

CLR_L LD_L ENT ENP QD QC QB QA QD ∗ QC∗ QB∗ QA∗

0 x x x x x x x 0 0 0 0

1 0 x x x x x x D C B A

 1 1 0 x x x x x QD QC QB QA

 1 1 x 0 x x x x QD QC QB QA

 1 1 1 1 0 0 0 0 0 0 0 1

 1 1 1 1 0 0 0 1 0 0 1 0

 1 1 1 1 0 0 1 0 0 0 1 1

 1 1 1 1 0 0 1 1 0 1 0 0

 1 1 1 1 0 1 0 0 0 1 0 1

 1 1 1 1 0 1 0 1 0 1 1 0

 1 1 1 1 0 1 1 0 0 1 1 1

 1 1 1 1 0 1 1 1 1 0 0 0

 1 1 1 1 1 0 0 0 1 0 0 1

 1 1 1 1 1 0 0 1 1 0 1 0

 1 1 1 1 1 0 1 0 1 0 1 1

 1 1 1 1 1 0 1 1 1 1 0 0

 1 1 1 1 1 1 0 0 1 1 0 1

 1 1 1 1 1 1 0 1 1 1 1 0

 1 1 1 1 1 1 1 0 1 1 1 1

 1 1 1 1 1 1 1 1 0 0 0 0

74x163

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-30
Traditional logic
symbol for
the 74x163.

In Tab. 6, usual state-machine coding style is not used
Since next-state logic is simple, it is put in the same always block with
the edge-triggered flip-flop behavior

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 59 / 63

Counters in Verilog

Table 7: Verilog code for a 74x162-like 4-bit decimal counter.

DO
DO
DO

-./�04

��&
��5

��

3'
3*

4

�.

��

�

�

6(�
6($

-

�7

'
*

1

.

�
�

�

0
3�
3�

��
&�%

�1

�4

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 60 / 63

Counters in Verilog

Table 8: Verilog code for the excess-3 decimal counting sequence.

598 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

8.4.3 MSI Counters and Applications
The most popular MSI counter is the 74x163, a synchronous 4-bit binary counter
with active-low load and clear inputs, with the traditional logic symbol shown in
Figure 8-30. Its function is summarized by the state table in Table 8-11, and its
internal logic diagram is shown in Figure 8-31.

The ’163 uses D flip-flops rather than T flip-flops internally to facilitate the
load and clear functions. Each D input is driven by a 2-input multiplexer consist-
ing of an OR gate and two AND gates. The multiplexer output is 0 if the CLR_L
input is asserted. Otherwise, the top AND gate passes the data input (A, B, C,
or D) to the output if LD_L is asserted. If neither CLR_L nor LD_L is asserted, the
bottom AND gate passes the output of an XNOR gate to the multiplexer output.

Ta b l e 8 - 1 1 State table for a 74x163 4-bit binary counter.

Inputs Current State Next State

CLR_L LD_L ENT ENP QD QC QB QA QD ∗ QC∗ QB∗ QA∗

0 x x x x x x x 0 0 0 0

1 0 x x x x x x D C B A

 1 1 0 x x x x x QD QC QB QA

 1 1 x 0 x x x x QD QC QB QA

 1 1 1 1 0 0 0 0 0 0 0 1

 1 1 1 1 0 0 0 1 0 0 1 0

 1 1 1 1 0 0 1 0 0 0 1 1

 1 1 1 1 0 0 1 1 0 1 0 0

 1 1 1 1 0 1 0 0 0 1 0 1

 1 1 1 1 0 1 0 1 0 1 1 0

 1 1 1 1 0 1 1 0 0 1 1 1

 1 1 1 1 0 1 1 1 1 0 0 0

 1 1 1 1 1 0 0 0 1 0 0 1

 1 1 1 1 1 0 0 1 1 0 1 0

 1 1 1 1 1 0 1 0 1 0 1 1

 1 1 1 1 1 0 1 1 1 1 0 0

 1 1 1 1 1 1 0 0 1 1 0 1

 1 1 1 1 1 1 0 1 1 1 1 0

 1 1 1 1 1 1 1 0 1 1 1 1

 1 1 1 1 1 1 1 1 0 0 0 0

74x163

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-30
Traditional logic
symbol for
the 74x163.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 61 / 63

Counters in Verilog

Table 9: Verilog code for a 74x169-like 4-bit up/down counter.

Section 8.4 Counters 605

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

stopped, MAXCNT must be asserted in state 255 even while the counter is
stopped. Therefore, the low-order counter’s ENT input is always asserted, its
RCO output is connected to the high-order ENT input, and MAXCNT detects
state 255 even if CNTEN is not asserted (compare with the behavior of RCO8 in
Figure 8-39). To enable counting, CNTEN is connected to the ENP inputs in
parallel. A NAND gate asserts RELOAD_L to go back to state 63 only if GO_L is
asserted and the counter is in state 255.

Another counter with functions similar to 74x163’s is the 74x169, whose
logic symbol is shown in Figure 8-41. One difference in the ’169 is that its carry
output and enable inputs are active low. More importantly, the ’169 is an up/
down counter; it counts in ascending or descending binary order depending on
the value of an input signal, UP/DN. The ’169 counts up when UP/DN is 1 and
down when UP/DN is 0.

8.4.4 Decoding Binary-Counter States
A binary counter may be combined with a decoder to obtain a set of 1-out-of-m-
coded signals, where one signal is asserted in each counter state. This is useful
when counters are used to control a set of devices where a different device is
enabled in each counter state. In this approach, each output of the decoder
enables a different device.

Figure 8-42 shows how a 74x163 wired as a modulo-8 counter can be com-
bined with a 74x138 3-to-8 decoder to provide eight signals, each one
representing a counter state. Figure 8-43 shows typical timing for this circuit.
Each decoder output is asserted during a corresponding clock period.

Notice that the decoder outputs may contain “glitches” on state transitions
where two or more counter bits change, even though the ’163 outputs are glitch
free and the ’138 does not have any static hazards. In a synchronous counter like
the ’163, the outputs don’t change at exactly the same time. More important,

74x169

74x169

UP/DN

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-41
Logic symbol for the
74x169 up/down
counter.

up/down counter

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A
Q1

Q2

Q3
B

3

4

C

D

5

6
QC

QD
15

RCO
U1

13

12

CLOCK

RPU
+5 V

R

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2

Figure 8-42
A modulo-8 binary
counter and decoder.

decoding glitches

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 62 / 63

References

John F. Wakerly, Digital Design: Principles and Practices (4th
Edition), Prentice Hall, 2005.

Moslem Amiri, Václav Přenosil Design of Digital Systems II Fall, 2014 63 / 63

