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Bias-variance decomposition

Hastie et al. Elements of Statistical Learning, fig.7.1
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assume some training set Z = {(x;, yi)li = 1,...,n} has been
drawn i.i.d. from the underlying fixed distribution P(X, Y)

let L(y, h(x)) be the loss function (h is the classifier function)
training error (apparent error):

1 n
Erro = — ; L(yi, h(xi))
generalization error: the prediction error over a test set:
Errz = E[L(Y, h(X))|Z]

expected prediction error (expected loss):

Err = E[Errz] = E[L(Y, h(X))]
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Loss functions (some):
@ 0-1loss: L(y,h(x)) = 1y2nx)
@ squared loss: L(y, h(x)) = (y — h(x))?
@ in the context of MAP: for K groups/classes, 1,...,K

pk(X) = Pr(Y = k|X) and the classifier is (a monotone
transformation of) the estimate py. Then an adequate loss is

L(Y,pk) = -2 ) 1y=klog pk(X)
=1

= —2log py(X)
= —2 x log-likelihood

K

("-2" is used to make above loss equivalent to squared loss
under Gaussian distributions)
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Under some model Y = h(X) + €, where € is some noise
(E[€e] = 0, Var[e] = 02, and using squared loss, the error at a given
point xo can be written as
Err(xo) = E[(Y — h(X))?IX = xo]
= o2 + [E[h(x0)] - Y]* + E[h(x0) ~ E[h(xo)]}?
= 02 + Bias? + Variance

o2 cannot be influenced by the model

(]

the bias: difference between true value and predicted value

(]

the variance: the expected squared deviation of prediction
from its mean

°

too complex models: low bias, high variance

(7]

too simple models: high bias, low variance
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Model complexity

@ in some cases, it is easy to quantify the model complexity
@ k—NN: 1/k is a measure of complexity

o for a linear model h(x) = (w, x), the complexity is directly
related to the number of non-zero coefficients

@ SVM: VC-dimension can be interpreted as a measure of
complexity

@ "Occam’s razor" principle (lex parsimoniae): among
competing hypotheses/explanations the "simpler" one (with
fewest assumptions) should be preferred
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Example:

Hastie et al. Elements of Statistical Learning, fig.7.2
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@ idea: compute some fitness indicator for a series of models
and choose the "best" one

o for classifiers, the most used fithess indicator is the
classification performance — estimate the error rate or AUC
or any other performance parameter, for a series of values of
meta-parameter(s) and choose the one with lowest error rate
(or highest AUC, etc). E.qg.: grid search we used for SVM

@ alternative: try to balance the model complexity and its
fitness: AIC, BIC, MDL
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AIC - Akaike’s Information Criterion

In general, for log-likelihood maximization criterion for model fitting,
2 d
AIC = —— x log-likelihood + 2—
n n
where "log-likelihood" is the fitted (maximized) log-likehood (by the
classifier) and d is a measure of complexity (degrees of freedom)

of the model.
The best model (in AiC-sense): the one that minimizes AlC.

Vlad PA196: Pattern Recognition



Model selection Bias-variance trade-off
Learning curves Some methods for model selection

AIC - for classifiers

AIC(@) = Errp(a) + 2@6’5

°

a is some meta-parameter of the classifier (e.g. polynomial
degree for a polynomial kernel SVM, or k in k—NN etc.)

d(«a) is the corresponding complexity
AlC(a) is an estimate of the test error curve
best model (in AlIC-sense) is the one with @ minimizing AlC(«)

®© 6 o o

62 can be estimated from mean squared error of a low-bias
model
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Example

Hastie et al. Elements of Statistical Learning, fig.7.3
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BIC - Bayesian Information Criterion

In general, for log-likelihood-maximization settings,
BIC = -2 x log-likelihood + dlog n
which, for a classifier, can be written as

n d
BIC = — |Erro +logn - —&2
a n

€

@ BIC penalizes more heavily complex models (than AIC)
@ the best model (in BIC sense) is the one that minimizes BIC
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MDL - Minimum Description Length

@ MDL leads to a formally identical criterion to BIC, but comes
from a totally different theoretical framework

@ the classifier is seen as an encoder of the message (data)

@ the model is the encoded message to be transmitted - hence
we want it to be parsimonious (sparse) and with limited
information loss
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@ a "diagnostic" for classifier training

@ can be used to estimate/approximate the sample size needed
for a given problem

Error|

Test error

Train error

n (sample size)
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Example: Popovici et al, Effect of training-sample size..., BCR 2010

@ breast cancer gene expression data

@ problems: prediction of ER status, pCR and pCR within ER-

@ the performance (AUC) is estimated for increasing sample
size

@ the following learning curve model is fit (Fukunaga):

AUC(n) =a+b/n
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Figure 4 Learning curves for the best predictors for each of the three endpoints. For each endpoint, the learning curve of the best-
performing model on the validation set was estimated by fivefold cross-validation for gradually increasing sample sizes. The plot shows both
the estimated performance for different sample sizes and the fitted curve. The quadratic discriminant analysis (QDA) classifier required more than

60 samples, so the minimum sample size for it was 80. Note the nonlinear scale of the x-axis.
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