
Course Organization

Lecture 1/Part 1

1

Outline

 About the lecturer

 About the course

 Lectures

 Seminars

 Evaluation

 Literature

2

About the lecturer:

 Ing. RNDr. Barbora Bühnová, Ph.D.

 Industrial experience

 Research

 Quality of software architecture

 Lab of Software Architecture and Information Systems (LaSArIS)

 Teaching

 Courses on UML, architecture design, programming, algorithm

design, automata and grammars, and others

 Collaboration with students

 Seminar tutoring

 Bachelor/Master theses

3

About the course:

 PB007 Software Engineering I

 Lectures

1. Software process, role of the UML language.

2. Functional requirements specification, UML Use Case diagram.

3. Nonfunctional requirements specification, UML Activity diagram.

4. System analysis and design, structured vs. object-oriented A&D.

5. Object oriented analysis, UML Class, Object and State diagram.

6. Structured analysis, data modelling, ERD.

7. High-level design, UML Class diagram in design.

8. Low-level design and implementation issues, UML Interaction diagrams

9. Architecture design, UML Package, Component and Deployment diagram.

10. Testing, verification and validation.

11. Operation, maintenance and system evolution.

12. Software development management.

13. Advanced software engineering techniques.

4

About the course:

 PB007 Software Engineering I

 Seminars

1. Visual Paradigm introduction, project assignment.

2. Project start, initial Use Case diagram.

3. Detailed Use Case diagram, textual specification of UC

4. Specification of use cases (textual if not finished, Activity diagram).

5. Analytical Class diagram, Object diagram.

6. Finalization of analytical Class diagram, Use Case diagram update.

7. State diagram.

8. Data modelling, Entity Relationship diagram.

9. Design-level Class diagram, interfaces, implementation details.

10. Refinement of use cases with Interaction diagrams.

11. Finalization of Interaction diagrams, Class diagram update.

12. Packages, Component diagram, Deployment diagram.

13. Project evaluation.

5

About the course:

 PB007 Software Engineering I

 Prerequisites

 Basic knowledge of object oriented programming

 Lectures

 13 teaching weeks + 1 week free (28.10.2014)

 Seminars

 12 teaching weeks + 1 week final project discussion

 Team project on UML modeling, teams of 3 students (or less)

 Obligatory attendance (one absence ok) and weekly task delivery

 Simple test at the beginning of each seminar (starting in Week 03)

 Penalty for extra absence (-5 points) and late task delivery (-5 p.)

 Evaluation

 Seminar = project YES/NO, test (20 points) and penalty recorded in IS notebook

 Exam = test (35 points) + on-site modelling (35 points)

 Grades: F<50, 50<=E<58, 58<=D<66, 66<=C<74, 74<=B<82, 82<=A
6

Literature

 Software Engineering, 9/E

 Author: Ian Sommerville

 Publisher: Addison-Wesley

 Copyright: 2011

 UML 2 and the Unified Process, 2/E

 Author: Jim Arlow and Ila Neustadt

 Publisher: Addison-Wesley

 Copyright: 2005

7

Software process

Lecture 1/Part 2

Chapter 2 Software Processes 8

Outline

 Software engineering

 Software process activities

 Software process models

Chapter 2 Software Processes 9

Software and system engineering

 The economies and human lifes of ALL developed

nations are dependent on software.

 Software engineering is concerned with theories,

methods and tools for professional software

development.

 Software engineering is concerned with cost-effective

development of high-quality software systems.

 System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering.

Chapter 1 Introduction

Software products

Generic products

 Stand-alone systems that are marketed and sold to any

customer who wishes to buy them.

 Examples – PC software such as graphics programs, project

management tools; CAD software.

 Customized products

 Software that is commissioned by a specific customer to meet

their own needs.

 Examples – embedded control systems, air traffic control

software, traffic monitoring systems.

Chapter 1 Introduction 11

Application types

 Stand-alone desktop applications

 Interactive web-based applications

 Embedded control systems

 Batch processing systems

 Computer games

 Systems for modeling and simulation

 Data collection and monitoring systems

 Systems of systems

 Chapter 1 Introduction 12

Software engineering fundamentals

 Some fundamental principles apply to all types of

software system, irrespective of the development

techniques used:

 Systems should be developed using a managed and

understood development process. Of course, different

processes are used for different types of software.

 Dependability and performance are important for all types of

system.

 Understanding and managing the software specification and

requirements (what the software should do) are important.

 Where appropriate, you should reuse software that has already

been developed rather than write new software.

Chapter 1 Introduction 13

The software process

 A structured set of activities required to develop a

software system.

Many different software processes but all involve:

 Specification

 Analysis and design

 Implementation

 Validation and verification

 Evolution

 Is the analysis and design always involved?

Chapter 2 Software Processes 14

Development

Software process activities

 Software specification, where customers and engineers

define the software and the constraints on its operation.

 Software analysis and design, where the requirements

are refined into system design.

 Software implementation, where the software is

implemented.

 Software validation and verification, where the software

is checked to ensure that it is what the customer requires.

 Software evolution, where the software is modified to

reflect changing customer and market requirements.

15 Chapter 2 Software Processes

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile.

 Reuse-oriented software engineering

 The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from many different

models.
Chapter 2 Software Processes 16

Plan-driven and agile development

 Plan-driven development

 A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced

at each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental

development is possible

 Agile development

 Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

17 Chapter 3 Agile software development

The waterfall model

Chapter 2 Software Processes 18

Waterfall model benefits and problems

 The waterfall model is mostly used for large system

engineering projects where a system is developed at

several sites.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

 Suitable for new versions of generic products.

 Well understood context, stable requirements.

 The process makes it difficult to respond to changing

customer requirements.

 Therefore, this model is only appropriate when the requirements

are well-understood and changes can be limited.

Chapter 2 Software Processes 19

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with

requirements elicitation, consistency checking and validation;

 In design processes to explore design options and develop a

UI design;

 Prototypes often have poor internal structure and thus

should not become the foundation of the final system.

20 Chapter 2 Software Processes

Boehm’s spiral model

 Process is represented as a spiral rather than as a

sequence of activities with backtracking.

 Each loop in the spiral represents a phase in the

process.

 No fixed phases such as specification or design - loops

in the spiral are chosen depending on what is required.

 Risks are explicitly assessed and resolved throughout

the process.

21 Chapter 2 Software Processes

Boehm’s spiral model of the software

process

22 Chapter 2 Software Processes

Spiral model sectors

Objective setting

 Specific objectives for the phase are identified.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key

risks.

 Development and validation

 A development model for the system is chosen which can be

any of the generic models.

 Planning

 The project is reviewed and the next phase of the spiral is

planned.

23 Chapter 2 Software Processes

The Rational Unified Process

 A modern generic process commonly associated with the

Unified Modeling Language (UML).

 Brings together aspects of a number of generic process

models discussed in this lecture. Which ones?

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practice perspective that suggests good practices to be used

during the process.

24 Chapter 2 Software Processes

Phases in the Rational Unified Process

25 Chapter 2 Software Processes

 Inception

 Establish the business case for the system.

 Elaboration

 Develop understanding of the problem domain and system architecture.

 Construction

 System design, programming and testing.

 Transition

 Deploy the system in its operating environment.

RUP process architecture

26 Chapter 2 Software Processes

Iterative and incremental development

Chapter 2 Software Processes 27

What is the difference between the two?

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest

priority requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

28 Chapter 2 Software Processes

Incremental development benefits

 Customer value can be delivered with each increment

so system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most attention (design, testing, etc.).

Chapter 2 Software Processes 29

Incremental development problems

 The complete specification is hard to foresee.

 This becomes problematic when complete specification is

required in contract negotiation.

 System structure tends to degrade as new increments

are added.

 Unless time and money is spent on extensive refactoring,

regular changes tend to corrupt system structure and increase

the cost of incorporating further changes.

 It is hard to identify and effectively design basic facilities

shared by different parts of the system.

 The process is not visible, progress is hard to trace.

Chapter 2 Software Processes 30

Agile methods

 Agile methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and

to be able to respond quickly to changing

requirements without excessive rework.

31 Chapter 3 Agile software development

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in

the development process. Wherever possible, actively work to

eliminate complexity from the system.

32 Chapter 3 Agile software development

Problems with agile methods

 It can be difficult to keep the interest of customers who

are involved in the process.

 Because of their focus on small, tightly-integrated teams,

one needs to be careful when scaling agile methods to

large systems.

 Prioritizing changes can be difficult where there are

multiple stakeholders.

Maintaining simplicity requires extra work.

 Contracts may be a problem as with other approaches

to iterative development.

33 Chapter 3 Agile software development

Extreme programming

 Perhaps the best-known and most widely used agile
method.

 Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only
accepted if tests run successfully.

34 Chapter 3 Agile software development

XP and agile principles

 Incremental development is supported through small,

regular, frequent system releases.

 Customer involvement means full-time customer

engagement with the team.

 People not process through pair programming,

collective ownership and a process that avoids long

working hours.

Maintaining simplicity through constant refactoring of

code.

35 Chapter 3 Agile software development

Reuse-oriented software engineering

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Process stages

 Component analysis;

 Requirements modification;

 System design with reuse;

 Development and integration.

 Reuse is now the standard approach for building many

types of business system

Chapter 2 Software Processes 36

Reuse-oriented software engineering

Chapter 2 Software Processes 37

Key points

 There are many different types of system and each

requires appropriate software engineering tools and

techniques for their development.

 Software engineering is an engineering discipline that is

concerned with all aspects of software production.

 The high-level activities of specification, analysis and design,

implementation, validation and evolution are part of all software

processes.

General process models describe the organization of

software processes.

 Examples of general models include the ‘waterfall’ model,

incremental development, and reuse-oriented development.

 Chapter 1 Introduction 38

Key points

 Processes should include activities to cope with change.

 This may involve prototyping and incremental delivery, which

help to avoid poor early decisions on requirements and design.

 The Rational Unified Process is a modern generic

process model that is

 organized into phases (inception, elaboration, construction and

transition)

 but separates activities (requirements, analysis and design,

etc.) from these phases.

 Agile methods are incremental development methods

that focus on frequent releases, reducing process

overheads and emphasize customer involvement.

39 Chapter 2 Software Processes

UML in Software Development

Lecture 1/Part 3

40 Chapter 5 System modeling

Outline

 System modeling

 Structural models

 Interaction models

 Behavioral models

41 Chapter 5 System modeling

System modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a

different view or perspective of that system.

 System modeling has now come to mean representing a

system using some kind of graphical notation, which is

now almost always based on notations in the Unified

Modeling Language (UML).

 System modelling helps the analyst to understand the

functionality of the system and models are used to

communicate with colleagues and customers.

Chapter 5 System modeling 42

System perspectives

 An external perspective, where you model system

boundary, the context and/or environment of the system.

 A structural perspective, where you model the

organization of a system or the structure of the data that

is processed by the system.

 An interaction perspective, where you model the

interactions between a system and its environment, or

between the components of a system.

 A behavioral perspective, where you model the

dynamic behavior of the system and how it responds to

events.

 Chapter 5 System modeling 43

UML diagram types

 External perspective

 Use case diagram

 Structural perspective

 Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective

 Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective

 Activity diagram, State diagram

Chapter 5 System modeling 44

Popular UML diagrams

 Use case diagrams, which show the interactions

between a system and its environment.

 Class diagrams, which show the object classes in the

system and the associations between these classes.

 Sequence diagrams, which show interactions between

actors and the system and between system components.

 Activity diagrams, which show the activities involved in

a process or in data processing.

Chapter 5 System modeling 45

UML Use case diagram:

 Medical receptionist in health care system

Chapter 5 System modeling 46

UML Class diagram:

 Health care system

Chapter 5 System modeling 47

UML Sequence diagram:

 View patient information in health care system

Chapter 5 System modeling 48

UML Activity diagram:

 Process model of involuntary detention

Chapter 5 System modeling 49

UML 1.x notation

Key points

 A model is an abstract view of a system that ignores system

details. Complementary system models can be developed to

show the system’s context, structure, behavior and

interactions.

 Context models show how a system that is being modeled is

positioned in an environment with other systems.

 Structural models show the organization and architecture of

a system. Class diagrams are used to define the static

structure of classes in a system and their associations.

 Interaction models are used to describe the interactions

between system elements and Behavioral models to detail

the internal dynamic behavior of system elements/processes.

 Chapter 5 System modeling 50

