
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 6:

Formal Relational Query Languages

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan6.2Database System Concepts - 6th Edition

Chapter 6: Formal Relational Query Languages

 Relational Algebra

 Tuple Relational Calculus

 Domain Relational Calculus

©Silberschatz, Korth and Sudarshan6.3Database System Concepts - 6th Edition

Relational Algebra

 Procedural language

 Six basic operators

 select:

 project:

 union:

 set difference: –

 Cartesian product:

 rename:

 The operators take one or two relations as inputs and produce a new

relation as a result.

 E.g. : r s s = (r)

©Silberschatz, Korth and Sudarshan6.4Database System Concepts - 6th Edition

Select Operation – Example

 Relation r

 A=B D > 5 (r)

©Silberschatz, Korth and Sudarshan6.5Database System Concepts - 6th Edition

Select Operation

 Notation: p(r)

 p is called the selection predicate

 Defined as:
p(r) = {t | t r and p(t)}

Where p is a formula in propositional calculus consisting of terms connected
by conjunctions: (and), (or), (not)

formula := term
term <conjunction> term
(term)

term := expr
expr <op> expr
(expr)

expr := attribute
constant

<op> is one of: =, , >, , <,

 Example of selection:

 dept_name=‘Physics’ (instructor)

©Silberschatz, Korth and Sudarshan6.6Database System Concepts - 6th Edition

Project Operation – Example

 Relation r:

 A,C (r)

©Silberschatz, Korth and Sudarshan6.7Database System Concepts - 6th Edition

Project Operation

 Notation:

where A1, A2 are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by erasing

the columns that are not listed

 Duplicate rows removed from result, since relations are sets

 Example: instructor(ID, name, salary, dept_name)

To eliminate the dept_name attribute of instructor write:

ID, name, salary (instructor)

)(,,
2

,
1

r
k

AAA

©Silberschatz, Korth and Sudarshan6.8Database System Concepts - 6th Edition

Union Operation – Example

 Relations r, s:

 r s:

©Silberschatz, Korth and Sudarshan6.9Database System Concepts - 6th Edition

Union Operation

 Notation: r s

 Defined as:

r s = {t | t r or t s}

 For r s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible

(e.g.: 2nd column of r deals with the same type of values

as does the 2nd column of s)

 Example: to find all courses taught in the Fall 2009 semester, or in the

Spring 2010 semester, or in both

course_id (semester=“Fall” Λ year=2009 (section))

course_id (semester=“Spring” Λ year=2010 (section))

©Silberschatz, Korth and Sudarshan6.10Database System Concepts - 6th Edition

Set difference of two relations

 Relations r, s:

 r – s:

©Silberschatz, Korth and Sudarshan6.11Database System Concepts - 6th Edition

Set Difference Operation

 Notation r – s

 Defined as:

r – s = {t | t r and t s}

 Set differences must be taken between compatible relations.

 r and s must have the same arity

 attribute domains of r and s must be compatible

 Example: to find all courses taught in the Fall 2009 semester, but not in

the Spring 2010 semester

course_id (semester=“Fall” Λ year=2009 (section)) −

course_id (semester=“Spring” Λ year=2010 (section))

©Silberschatz, Korth and Sudarshan6.12Database System Concepts - 6th Edition

Cartesian-Product Operation – Example

 Relations r, s:

 r s:

©Silberschatz, Korth and Sudarshan6.13Database System Concepts - 6th Edition

Cartesian-Product Operation

 Notation r s

 Defined as:

r s = {t q | t r and q s}

 Assume that attributes of r(R) and s(S) are disjoint.

 That is, R S = .

 If attributes of r(R) and s(S) are not disjoint, then renaming must be

used.

©Silberschatz, Korth and Sudarshan6.14Database System Concepts - 6th Edition

Composition of Operations
 Can build expressions using multiple operations

 Example: A=C(r s)

 r s

 A=C(r s)

©Silberschatz, Korth and Sudarshan6.15Database System Concepts - 6th Edition

Rename Operation

 Allows us to name, and therefore to refer to, the results of relational-

algebra expressions.

 Allows us to refer to a relation by more than one name.

 Example:

 x (E)

returns the expression E under the name X

 If a relational-algebra expression E has arity n, then

returns the result of expression E under the name X, and with the

attributes renamed to A1 , A2 , …., An .

)(),...,
2

,
1

(E
n

AAAx

©Silberschatz, Korth and Sudarshan6.16Database System Concepts - 6th Edition

Example Query

 Find the largest salary in the university

 Step 1: find instructor salaries that are less than some other

instructor salary (i.e. not maximum)

– using a copy of instructor under a new name d

 instructor.salary (instructor.salary < d.salary

(instructor d (instructor)))

 Step 2: Find the largest salary

 salary (instructor) –

instructor.salary (instructor.salary < d.salary

(instructor d (instructor)))

©Silberschatz, Korth and Sudarshan6.17Database System Concepts - 6th Edition

Example Queries

 Find the names of all instructors in the Physics department, along with the

course_id of all courses they have taught

 Query 1

instructor.name,course_id (dept_name=‘ Physics’ (

 instructor.ID=teaches.ID (instructor teaches)))

 Query 2

instructor.name,course_id (instructor.ID=teaches.ID (

 dept_name=‘ Physics’ (instructor) teaches))

©Silberschatz, Korth and Sudarshan6.18Database System Concepts - 6th Edition

Formal Definition

 A basic expression in the relational algebra consists of either one of the

following:

 A relation in the database

 A constant relation

 Let E1 and E2 be relational-algebra expressions; the following are all

relational-algebra expressions:

 E1 E2

 E1 – E2

 E1 E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of some of the attributes in E1

 x (E1), x is the new name for the result of E1

©Silberschatz, Korth and Sudarshan6.19Database System Concepts - 6th Edition

Additional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Outer join

 Assignment

©Silberschatz, Korth and Sudarshan6.20Database System Concepts - 6th Edition

Set-Intersection Operation

 Notation: r s

 Defined as:

 r s = { t | t r and t s }

 Assume:

 r, s have the same arity

 attributes of r and s are compatible

 Note: r s = r – (r – s) = s – (s – r)

©Silberschatz, Korth and Sudarshan6.21Database System Concepts - 6th Edition

Set-Intersection Operation – Example

 Relation r, s:

 r s

©Silberschatz, Korth and Sudarshan6.22Database System Concepts - 6th Edition

 Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.

Then, r s is a relation on schema R S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R S, add

a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

r(R), where R = (A, B, C, D)

s(S), where S = (E, B, D)

 Result schema of r s is (A, B, C, D, E)

 r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B r.D = s.D (r s))

©Silberschatz, Korth and Sudarshan6.23Database System Concepts - 6th Edition

Natural Join Example

 Relations r, s:

 r s

©Silberschatz, Korth and Sudarshan6.24Database System Concepts - 6th Edition

Natural Join and Theta Join

 Find the names of all instructors in the Comp. Sci. department together with

the course titles of all the courses that the instructors teach

 name, title (dept_name=‘Comp. Sci.’ (instructor teaches course))

 Natural join is associative

 (instructor teaches) course is equivalent to

instructor (teaches course)

 Natural join is commutative

 instructor teaches is equivalent to

teaches instructor

 The theta join operation r s is defined as

 r s = (r s)

©Silberschatz, Korth and Sudarshan6.25Database System Concepts - 6th Edition

Outer Join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples form one relation that does not

match tuples in the other relation to the result of the join.

 Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by

definition.

 We shall study precise meaning of comparisons with nulls later

©Silberschatz, Korth and Sudarshan6.26Database System Concepts - 6th Edition

Outer Join – Example

 Relation instructor1

 Relation teaches1

ID course_id

10101

12121

76766

CS-101

FIN-201

BIO-101

Comp. Sci.

Finance

Music

ID dept_name

10101

12121

15151

name

Srinivasan

Wu

Mozart

©Silberschatz, Korth and Sudarshan6.27Database System Concepts - 6th Edition

 Left Outer Join

instructor teaches

Outer Join – Example

 Join

instructor teaches

ID dept_name

10101

12121

Comp. Sci.

Finance

course_id

CS-101

FIN-201

name

Srinivasan

Wu

ID dept_name

10101

12121

15151

Comp. Sci.

Finance

Music

course_id

CS-101

FIN-201

null

name

Srinivasan

Wu

Mozart

©Silberschatz, Korth and Sudarshan6.28Database System Concepts - 6th Edition

Outer Join – Example

 Full Outer Join

instructor teaches

 Right Outer Join

instructor teaches

ID dept_name

10101

12121

76766

Comp. Sci.

Finance

null

course_id

CS-101

FIN-201

BIO-101

name

Srinivasan

Wu

null

ID dept_name

10101

12121

15151

76766

Comp. Sci.

Finance

Music

null

course_id

CS-101

FIN-201

null

BIO-101

name

Srinivasan

Wu

Mozart

null

©Silberschatz, Korth and Sudarshan6.29Database System Concepts - 6th Edition

Outer Join using Joins

 Outer join can be expressed using basic operations

 e.g. r s can be written as

(r s) U (r – ∏R(r s)) {(null, …, null)}

©Silberschatz, Korth and Sudarshan6.30Database System Concepts - 6th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for some

of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values (as in SQL)

 For duplicate elimination and grouping, null is treated like any other

value, and two nulls are assumed to be the same (as in SQL)

©Silberschatz, Korth and Sudarshan6.31Database System Concepts - 6th Edition

Null Values

 Comparisons with null values return the special truth value: unknown

 If false was used instead of unknown, then not (A < 5)

would not be equivalent to A >= 5

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 In SQL there is a special operator “is null”, so “P is null” evaluates

to true if predicate P evaluates to unknown

 Result of select predicate is treated as false if it evaluates to unknown

©Silberschatz, Korth and Sudarshan6.32Database System Concepts - 6th Edition

Extended Relational-Algebra-Operations

 Generalized Projection

 Aggregate Functions

©Silberschatz, Korth and Sudarshan6.33Database System Concepts - 6th Edition

Generalized Projection

 Extends the projection operation by allowing arithmetic functions to be

used in the projection list.

 E is any relational-algebra expression

 Each of F1, F2, …, Fn are are arithmetic expressions involving constants

and attributes in the schema of E.

 Given relation instructor(ID, name, dept_name, salary) where salary is

annual salary, get the same information but with monthly salary

ID, name, dept_name, salary/12 (instructor)

)(,...,,
21

E
nFFF

©Silberschatz, Korth and Sudarshan6.34Database System Concepts - 6th Edition

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a single

value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

 Aggregate operation in relational algebra

E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name

 Note: Some books/articles use instead of (Calligraphic G)

)()(,),(),(,,, 221121
E

mmn AFAFAFGGG

©Silberschatz, Korth and Sudarshan6.35Database System Concepts - 6th Edition

Aggregate Operation – Example

 Relation r:

A B

C

7

7

3

10

 sum(c) (r)
sum(c)

27

©Silberschatz, Korth and Sudarshan6.36Database System Concepts - 6th Edition

Aggregate Operation – Example

 Find the average salary in each department

dept_name avg(salary) (instructor)

avg

©Silberschatz, Korth and Sudarshan6.37Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate

operation

dept_name avg(salary) as avg_sal (instructor)

©Silberschatz, Korth and Sudarshan6.38Database System Concepts - 6th Edition

Modification of the Database

 The content of the database may be modified using the following

operations:

 Deletion

 Insertion

 Updating

 All these operations can be expressed using the assignment

operator ()

©Silberschatz, Korth and Sudarshan6.39Database System Concepts - 6th Edition

Deletion

 A delete request is expressed similarly to a query, except

instead of displaying tuples to the user, the selected tuples are

removed from the database.

 Can delete only whole tuples; cannot delete values on only

particular attributes

 A deletion is expressed in relational algebra by:

r r – E

where r is a relation and E is a relational algebra query.

 Example:

 Delete all account records in the Perryridge branch.

account account – branch_name = “Perryridge” (account)

©Silberschatz, Korth and Sudarshan6.40Database System Concepts - 6th Edition

Insertion

 To insert data into a relation, we either:

 specify a tuple to be inserted

 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:

r r E

where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E be a constant

relation containing one tuple.

 Example:

 Insert information in the database specifying that Smith has $1200

in account A-973 at the Perryridge branch.

account account {(“A-973”, “Perryridge”, 1200)}

depositor depositor {(“Smith”, “A-973”)}

©Silberschatz, Korth and Sudarshan6.41Database System Concepts - 6th Edition

Updating

 A mechanism to change a value in a tuple without charging all values in

the tuple

 Use the generalized projection operator to do this task

 Each Fi is either

 the I th attribute of r, if the I th attribute is not updated, or,

 if the attribute is to be updated Fi is an expression, involving only

constants and the attributes of r, which gives the new value for the

attribute

 Example:

 Make interest payments by increasing all balances by 5 percent.

)(
,,,, 21
rr

lFFF

account account_number, branch_name, balance * 1.05 (account)

©Silberschatz, Korth and Sudarshan6.44Database System Concepts - 6th Edition

Multi-set Relational Algebra

 Pure relational algebra removes all duplicates

 e.g. after projection

 Multi-set relational algebra retains duplicates, to match SQL semantics

 SQL duplicate retention was initially for efficiency, but is now a

feature

 Multi-set relational algebra defined as follows

 selection: has as many duplicates of a tuple as in the input, if the

tuple satisfies the selection

 projection: one tuple per input tuple, even if it is a duplicate

 cross product: If there are m copies of t1 in r, and n copies of t2

in s, there are m n copies of t1.t2 in r s

 Other operators similarly defined

 E.g. union: m + n copies, intersection: min(m, n) copies

difference: max(0, m – n) copies

©Silberschatz, Korth and Sudarshan6.45Database System Concepts - 6th Edition

Relational Algebra and SQL

 Assume the following expressions in multi-set relational algebra:

 A1, .., An (P (r1 r2 … rm))

is equivalent to the following expression in SQL

 select A1, A2, .. An

from r1, r2, …, rm

where P

 A1, A2 sum(A3) (P (r1 r2 … rm)))

is equivalent to the following expression in SQL

 select A1, A2, sum(A3)

from r1, r2, …, rm

where P

group by A1, A2

©Silberschatz, Korth and Sudarshan6.46Database System Concepts - 6th Edition

SQL and Relational Algebra

 More generally, the non-aggregated attributes in the select clause

may be a subset of the group by attributes, in which case the

equivalence is as follows:

select A1, sum(A3)

from r1, r2, …, rm

where P

group by A1, A2

is equivalent to the following expression in multiset relational algebra

 A1,sumA3(A1,A2 sum(A3) as sumA3(P (r1 r2 … rm)))

©Silberschatz, Korth and Sudarshan6.47Database System Concepts - 6th Edition

Tuple Relational Calculus

©Silberschatz, Korth and Sudarshan6.48Database System Concepts - 6th Edition

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form

{t | P (t) }

 It is the set of all tuples t such that predicate P is true for t

 t is a tuple variable, t [A] denotes the value of tuple t on attribute A

 t r denotes that tuple t is in relation r

 P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan6.49Database System Concepts - 6th Edition

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., , , , , ,)

3. Set of connectives: and (), or ()‚ not ()

4. Implication (): x y, if x if true, then y is true

x y x y

5. Set of quantifiers:

 t r (Q (t)) ”there exists” a tuple t in relation r

such that predicate Q (t) is true

 t r (Q (t)) Q is true “for all” tuples t in relation r

©Silberschatz, Korth and Sudarshan6.50Database System Concepts - 6th Edition

Example Queries

 Find the ID, name, dept_name, salary for instructors whose salary is

greater than $80,000

 As in the previous query, but output only the ID attribute value

{t | s instructor (t [ID] = s [ID] s [salary] 80000)}

Notice that a relation on schema (ID) is implicitly defined by

the query

{t | t instructor t [salary] 80000}

©Silberschatz, Korth and Sudarshan6.51Database System Concepts - 6th Edition

Example Queries

 Find the names of all instructors whose department is in the Watson

building

{t | s section (t [course_id] = s [course_id]

s [semester] = “Fall” s [year] = 2009

v u section (t [course_id] = u [course_id]

u [semester] = “Spring” u [year] = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, or in

the Spring 2010 semester, or both

{t | s instructor (t [name] = s [name]

 u department (u [dept_name] = s[dept_name] “

 u [building] = “Watson”))}

©Silberschatz, Korth and Sudarshan6.52Database System Concepts - 6th Edition

Safety of Expressions

 It is possible to write tuple calculus expressions that generate infinite

relations.

 For example, { t | t r } results in an infinite relation if the domain of

any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable

expressions to safe expressions.

 An expression {t | P (t)} in the tuple relational calculus is safe if every

component of t appears in one of the relations, tuples, or constants that

appear in P

 NOTE: this is more than just a syntax condition.

 E.g. { t | t [A] = 5 true } is not safe --- it defines an infinite set

with attribute values that do not appear in any relation or tuples

or constants in P.

©Silberschatz, Korth and Sudarshan6.53Database System Concepts - 6th Edition

Universal Quantification

 Find all students who have taken all courses offered in the

Biology department

 {t | r student (t [ID] = r [ID])

(u course (u [dept_name]=“Biology”

 s takes (t [ID] = s [ID]

s [course_id] = u [course_id]))}

 Note that without the existential quantification on student,

the above query would be unsafe if the Biology department

has not offered any courses.

©Silberschatz, Korth and Sudarshan6.54Database System Concepts - 6th Edition

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan6.55Database System Concepts - 6th Edition

Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple

relational calculus

 Each query is an expression of the form:

{ x1, x2, …, xn | P (x1, x2, …, xn)}

 x1, x2, …, xn represent domain variables

 P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan6.56Database System Concepts - 6th Edition

Example Queries

 Find the ID, name, dept_name, salary for instructors whose salary is

greater than $80,000

 {< i, n, d, s> | < i, n, d, s> instructor s 80000}

 As in the previous query, but output only the ID attribute value

 {< i> | < i, n, d, s> instructor s 80000}

 Find the names of all instructors whose department is in the Watson

building

{< n > | i, d, s (< i, n, d, s > instructor

 b, a (< d, b, a> department b = “Watson”))}

©Silberschatz, Korth and Sudarshan6.57Database System Concepts - 6th Edition

Example Queries

{<c> | a, s, y, b, r, t (<c, a, s, y, b, t > section

s = “Fall” y = 2009)

v a, s, y, b, r, t (<c, a, s, y, b, t > section]
s = “Spring” y = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, or in

the Spring 2010 semester, or both

This case can also be written as

{<c> | a, s, y, b, r, t (<c, a, s, y, b, t > section

((s = “Fall” y = 2009) v (s = “Spring” y = 2010))}

 Find the set of all courses taught in the Fall 2009 semester, and in

the Spring 2010 semester

{<c> | a, s, y, b, r, t (<c, a, s, y, b, t > section

s = “Fall” y = 2009)

 a, s, y, b, r, t (<c, a, s, y, b, t > section]

s = “Spring” y = 2010)}

©Silberschatz, Korth and Sudarshan6.58Database System Concepts - 6th Edition

Safety of Expressions

The expression:

{ x1, x2, …, xn | P (x1, x2, …, xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values

from dom (P) (that is, the values appear either in P or in a tuple of a

relation mentioned in P).

2. For every “there exists” subformula of the form x (P1(x)), the

subformula is true if and only if there is a value of x in dom (P1)

such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the subformula is

true if and only if P1(x) is true for all values x from dom (P1).

©Silberschatz, Korth and Sudarshan6.59Database System Concepts - 6th Edition

Universal Quantification

 Find all students who have taken all courses offered in the Biology

department

 {< i > | n, d, tc (< i, n, d, tc > student

(ci, ti, dn, cr (< ci, ti, dn, cr > course dn =“Biology”

 si, se, y, g (<i, ci, si, se, y, g> takes))}

 Note that without the existential quantification on student, the

above query would be unsafe if the Biology department has not

offered any courses.

* Above query fixes bug in page 246, last query

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 6

http://www.db-book.com/

