
Hardware Security Modules 

What is it? 
Hardware security modules (HSMs) provide secure key storage and efficient 
cryptographic processing to facilitate secure electronic transactions. We can 
distinguish among cryptographic (co)processors, cryptographic accelerators, and 
cryptographic smart cards. Coprocessors and accelerators are in comparison to 
smart cards typically much bigger add-on cards or external devices that must be 
installed into so called host devices (e.g., personal computer or some kind of 
specialized server). 

Basic architecture 
The basic architecture of HSMs comes from classical von Neumann architecture with 
the same building blocks. Moreover, the mechanisms of physical protection, special-
purpose (co)processors, generator of true random numbers (TRNG), and non-volatile 
RAM (NVRAM) were added. Clearly, smart cards are using different mechanisms of 
physical protection than other add-on cards, but the remaining building blocks are the 
same. The physical protection can be ensured for example by steel shielding 
surrounding the device, potting in epoxy resin, using wired mesh (alternatively 
modern conductive membranes), or various kinds of sensors (e.g., light, power glitch, 
pressure, thermal, and X-Ray sensors). The special-purpose (co)processors are 
typically used to accelerate symmetric ciphers (mostly DES, 3DES), hash functions 
(mostly MD5, SHA-1), or modular arithmetic (multiplication, exponentiation) that is 
used in many asymmetric cryptosystems. Hardware TRNGs are critical part of all 
HSMs – necessary for generation high-quality (i.e., perfectly random and 
unpredictable) cryptographic keys, initializing vectors, padding values, or algorithmic 
counter-measurements against side channel attacks. Battery powered NVRAM then 
serves as a secure storage of highly sensitive data (e.g. master keys) – while other 
keys can be securely stored outside HSM protected by master key(s). On the 
contrary, the amount of I/O circuits is reduced to achieve simpler and easily verifiable 
design. 

Evaluation 
Security requirements for HSMs are specified in FIPS 140-2 and cover areas related 
to the design and implementation of a cryptographic module. These areas include 
cryptographic module specification; module ports and interfaces; roles, services, and 
authentication; finite state model; physical security; operational environment; 
cryptographic key management; electromagnetic interference/electromagnetic 
compatibility (EMI/EMC); self-tests; and design assurance. A cryptographic module 
shall be tested against the requirements of each area and shall be independently 
rated in each area. In addition to receiving independent ratings for each of the 
security areas, a cryptographic module will also receive an overall rating (from level 1 
to the most secure level 4). The overall rating will indicate the minimum of the 
independent ratings received in the areas. An additional area concerned with the 
mitigation of other attacks is currently not tested, but the vendor is required to 
document implemented controls (e.g., differential power analysis, and TEMPEST). 



Eracom ProtectServer Orange (CSA 8000) 

Basic features 
Eracom ProtectServer Orange HSM (internal version) is a FIPS 140-1 (a predecessor 
of FIPS 140-2) level 3 certified PCI (2.1 compliant interface, 32 bit, 33 MHz, with both 
3.3V and 5V support) adapter that is typically employed to provide cryptographic 
services such as user and data authentication, message integrity, high-speed 
encryption, secure key storage and key management for e-Commerce, PKI 
applications, and financial EFT transactions. The evaluation covers the encapsulated 
processing subsystem and its specialized cryptographic hardware, code loading, 
tamper detection and response mechanisms, and the cryptographic algorithms: DES, 
3DES, RSA, DSA, and SHA-1. 

All following cryptographic techniques are also supported: symmetric cryptosystems 
AES, DES, 3DES, CAST-128, RC2, RC4 (and modes of operation ECB, CBC, 
OFB64, CFB-8/BCF); asymmetric cryptosystems RSA (up to 4096 bits), DSA, 
ECDSA (up to 512 bits), Diffie Hellman; message digests (hashing) algorithms MD2, 
MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPEMD-128, RIPEMD-160, MDC2; 
public key certificates PKCS #10 certificate requests, X.509 v3, PKCS #7 decode, 
PKCS #12 key and certificate import. 

ProtectServer Orange HSM contains also two RS-232 serial ports and supports 
smart card readers (Gemplus GemPC410, Towitoko CHIPDRIVE Extern 320 or 
CHIPDRIVE Micro 120) and smart cards (GPK 4000, GPK 8000, and GPK 16000). 

APIs and developer toolkits 
The only communication interface between HSM and host application (executed on 
the host device) is carefully designed application programming interface (API). API is 
the interface – the names, parameters and return values – of functions that are 
executed inside the HSM. This set of functions (ideally with some kind of security 
policy provided) allows write new applications communicating with HSMs. Eracom 
ProtectServer Orange HSM supports proprietary PKCS #11 API implementation 
(ProtectToolkit C), Java JCA/JCE provider implementation (ProtectToolkit J), 
Cryptographic Service Provider (CSP) for Microsoft CryptoAPI (ProtectToolkit M), 
EFT command set (ProtectToolkit EFT), and also PKCS#11 based OpenSSL engine 
integration (to accelerate for example Apache web server). 

The software development kit (ProtectProcessing) allows an unsurpassed level of 
flexibility and extensibility. It provides the ability to produce your own custom-specific 
functionality modules (e.g., new cryptographic algorithms) and allows them to be 
securely downloaded and executed within the HSM. Development kit supports also a 
software emulation of HSM that allows easier developing and debugging of such 
custom-specific functionality modules. 



Eracom ProtectToolkit C (based on PKCS #11) overview 
ProtectToolkit C can be used in any one of three operating modes. These are: 

 PCI mode in conjunction with a compatible Eracom Hardware Security Module 
(HSM) such as the ProtectServer Orange installed locally. 

 Network mode over a TCP/IP network, in conjunction with a compatible 
Eracom HSM such as the ProtectHost Orange, the ProtectServer Orange or 
the ProtectServer Orange External. 

 Software only mode, on a local machine without access to a hardware security 
module, for development and testing purposes. 

 
The model for ProtectToolkit C is based on 
standard PKCS #11 processing as illustrated 
in the following picture. It demonstrates how 
an application communicates its requests to a 
token via the PKCS #11 interface. In this 
model, a slot represents a device interface and 
a token represents the actual cryptographic 
device. For example, a smart card reader 
would represent a slot and the smart card 
would represent the token. 

ProtectToolkit C supports a number of different slot types: admin slots, user slots, 
smart card slots: 

 The admin slot is designated for the administrator and is used for configuration 
and administration of the HSM. Each HSM will have a single admin slot. 

 User slots are created by the Administrator for each user of the HSM and are 
designated for standard application usage. Each HSM may have a 
configurable number of user slots. 

 Smart card slots are automatically configured based on the attached smart 
card readers. Their primary purpose is for key backup and key restoration. 

Each token may contain a number of objects. The PKCS #11 standard allows for 
different types of objects which are classified as follows: 

 Data objects, which are defined by an application. 

 Certificate objects, which represent digital certificates such as X.509. 

 Key objects, which can be public, private, or secret cryptographic keys. 

Each object in the system is comprised of a number of attributes. These attributes 
describe the actual object as well as the access policy for that object. For example, 
each object may be classified as public or private; this classification determines who 
may access the object. A public object is visible to any user (or application), whereas 
a private object is only visible once the user is authenticated to the token where that 
object is stored. 

In general both PINs and case-sensitive passwords (between 1 and 32 characters in 
length) are used to authenticate users and to provide access to secured computer 
systems.



The administration of Eracom ProtectServer Orange HSM can be done via CLI or 

GUI. The CLI utilities are for example ctconf (configuration utility for administrators 

used for configure the operating parameters as setting initial admin PIN, security 
mode, slots, etc.), ctkmu (key management utility for key creation, deletion, import, 

export, as well as PIN change, token initialization and replication, etc.), ctstat 

(used to check the status of a token, determine what state the token is in and what, if 
any, objects it contains), and ctperf (performance reporting utility). Eracom 

provides also two applications with GUI – the administration utility (GCTADMIN) and 
the key management utility (KMU). 

The java-based GCTADMIN allows management 
of the HSM hardware using a PKCS #11 sub-
system (however, the functionality is identical to 

the command line utility ctconf). After starting 

GCTADMIN, the utility will check if the HSM 
hardware has been initialized. If the hardware 
has not been initialized, the operator will be 
prompted to initialize the admin token. If the 
hardware has been initialized, the operator is 
prompted for entry of the administrator PIN. 
Following a successful login, the main user 
interface is displayed (see the picture on the right side). The main interface shows 
the currently selected HSM and a variety of settings pertaining to the hardware. 

The java-based KMU allows management of keys using a PKCS #11 sub-system 

(however, the functionality is almost identical to the command line utility ctkmu). 
When the KMU is first started, all toolbar functions are initially disabled. The user 
must first select a token from the “Select a token” dropdown box, which will list all 
available tokens. Initialized tokens are displayed by their assigned label name. 
Uninitialized tokens are displayed as “<Slot n>:<uninitialized token>”. Note that the 
KMU is unable to initialize tokens. There are other utilities, such as GCTADMIN, 
which can be used to initialize tokens. 

Once a token has been 
selected the user will be 
given the option to login. 
After the PIN is successfully 
authenticated, a list of keys 
and other objects contained 
within the token is displayed 
in the “Objects on Selected 
Token” box. Appropriate 
buttons on the toolbar will 
now also be enabled as 
shown on the picture. 



//VARIABLES FOR SESSION INICIALIZATION 

CK_SESSION_HANDLE hSession;   //Session handle 

CK_CHAR userPIN[]={"1234"};   //User PIN 

CK_SLOT_ID slotID=0;    //Number of slot 

 

//VARIABLES FOR ERROR HANDLING 

CK_RV rv;     //Return value 

CK_BYTE ErrorString[100]="\0";  //Error string 

//INITIALIZATION -- this must be the first PKCS #11 call 

rv = C_Initialize(NULL_PTR); 

if ( rv ) { 

 C_ErrorString(rv,ErrorString,sizeof(ErrorString)); 

 fprintf(stderr, "C_Initialize error %x, %s\n", rv, ErrorString); 

 return 1; 

} 

  

// CHECK PKCS#11 VERSION 

rv = CheckCryptokiVersion(); 

if ( rv ) { 

printf( "Incompatible PKCS#11 version (0x%x)\n", rv ); 

return -1; 

} 

//USER LOGIN 

rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN)-1); 

if ( rv == CKR_OK) { 

 //. 

//THE CORE OF APPLICATION 

//. 

rv = C_Logout(hSession); 

} else {  

 printf("Login failed - error %d\n", rv);  

} 

//OPEN SESSION 

rv = C_OpenSession(slotID, CKF_RW_SESSION|CKF_SERIAL_SESSION, NULL, NULL, &hSession); 

if ( rv ) return 1; 

 

//PROTECTTOOLKIT C HEADER FILES 

#include<cryptoki.h> 

#include<ctextra.h> 

#include<ctutil.h> 

Eracom ProtectToolkit C – examples of API functions calls 
Development of new applications that use ProtectToolkit C API functions requires the 

library cryptoki.dll and for some extra API functions also libraries ctextra.dll 

and ctutil.dll. Hence, the corresponding header files must be included in the 

C/C++ source file and some minor changes in linking options must be done. 

The slot number of a particular user must be known for session initialization and a 
PIN for user authentication. 

The initialization of Cryptoki library is done by calling API function C_Initialize. 

The session opening is done by calling API function C_OpenSession. 

At this point the user/admin login can be performed by calling API function C_Login. 

After successful login, all (i.e., not only public) objects of a particular user or admin 
are accessible. 

These securely stored objects (e.g., cryptographic keys) can be subsequently used in 
the “core” of the application. API function C_Logout performs logout of a particular 

user or admin. 



//CLOSE SESSION 

C_CloseSession(hSession); 

 

rv = C_Finalize(NULL_PTR); 

if ( rv ) { 

 C_ErrorString(rv,ErrorString,sizeof(ErrorString)); 

 fprintf(stderr, "C_Finalize error %x, %s\n", rv, ErrorString); 

} 

 

//VARIABLES AND STRUCTURES FOR DECRYPTING 

CK_BYTE_PTR p3; 

CK_MECHANISM pMechanism = {   //Structure for cipher mechanism 

 CKM_AES_ECB, NULL_PTR, 0 

} 

CK_BYTE ciphertext[CT_SIZE]; 

CK_ULONG plaintextdatalen; 

 

//DECRYPTING 

rv = C_DecryptInit(hSession, &pMechanism, hMKey); 

rv = C_Decrypt(hSession, ciphertext, CT_SIZE, NULL_PTR, &plaintextdatalen); 

p3 = (CK_BYTE_PTR) malloc(plaintextdatalen); 

rv = C_Decrypt(hSession, ciphertext, CT_SIZE, p3, &plaintextdatalen); 

For example, decrypting of ciphertext (by using AES in ECB mode) with the key 

located inside HSM can be done by using the API functions C_DecryptInit and 

C_Decrypt. The first function initializes a decryption operation (hSession is the 

session’s handle; pMechanism points to the decryption mechanism; hKey is the 
handle of the decryption key) and the second function decrypts encrypted data in a 
single part. 

API function C_CloseSession closes a session between an application and a token 

and API function C_Finalize is called to indicate that an application is finished with 

the Cryptoki library (it should be the last Cryptoki call made by an application). 

Assignments 
 

1) Create a short program (using Eracom ProtectToolkit C API) that perform login 
to the software emulator of Eracom HSM (use pre-established token named 
“LABAK” and user password “1111” that was created/initialised on the seminar). 
[max. 2 points] 

2) Write a program (using Eracom ProtectToolkit C API) to encrypt and decrypt a 
single file on disk. [max. 8 points] 

The token LABAK should be used and a program will be able to: 

a. generate a new symmetric AES 256bit key associated with a name; 

b. create and encrypt a file named “test.txt.plain” (text file with ASCII 
symbols only) using this symmetric AES 256bit key (AES, CBC with 
padding); 

c. decrypt a file named “test.txt.enc” using this symmetric key again (AES, 
CBC with padding); decrypted file will have the name “test.txt.dec”; 

d. delete the symmetric AES key. 

The name of the key should be configurable. 


