
1

A Brief Intro to Verilog
 Brought to you by: Sat Garcia

2

Meet your 141(L) TA

 Sat Garcia
sat@cs.ucsd.edu
2nd Year Ph.D. Student
Office Hours: (Tentative)

 Place: EBU3b B225 (basement)
 Monday: 3-4pm
 Wednesday: 11am-Noon
 Please come to my office hours. I get lonely there

by myself!

2

3

What is Verilog?

 Verilog is:
A hardware design language (HDL)
Tool for specifying hardware circuits
Syntactically, a lot like C or Java
An alternative to VHDL (and more widely used)
What you'll be using in 141L
HELLA COOL!*

* If you are totally into hardware design languages

4

Verilog in the Design Process

Behavioral
Algorithm

Register
Transfer Level

Gate Level

Manual

Logic Synthesis

Auto Place + Route

Test
Results

Simulate

Test
Results

Simulate

Test
Results

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

3

5

Ways To Use Verilog
 Structural Level

 Lower level
 Has all the details in it (which gates to use, etc)

 Is always synthesizable

 Functional Level
 Higher Level

 Easier to write
 Gate level, RTL level, high-level behavioral
 Not always synthesizable

 We’ll be sticking with functional mostly

6

Data Types in Verilog

 Basic type: bit vector
Values: 0, 1, X (don't care), Z (high

impedence)
 Bit vectors expressed in multiple ways:

binary: 4'b11_10 (_ is just for readability)
hex: 16'h034f
decimal: 32'd270
other formats but these are the most useful

4

7

Data types (continued)
 Connect things together with: wire

Single wire:
 wire my_wire;

“Array” of wires
 wire[7:0] my_wire;
 Why not wire[0:7]?

 For procedural assignments, we'll use reg
Again, can either have a single reg or an array

 reg[3:0] accum; // 4 bit “reg”

reg is not necessarily a hardware register

8

A simple example (comb. circuit)

 Let's design a 1 bit full adder

FA

ba

s

cin

cout

module FA(input a, b, cin,
output s, cout);

assign s = a ^ b ^ c;
assign cout = (a & b) | (a & cin) | (b & cin);

endmodule

 Ok, but what if we want more than 1 bit FA?

*** Note: red means new concept, blue and
green are just pretty colors :-p

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

5

9

A 4-bit Full Adder

 We can use 1 bit FA
to build a 4 bit full
adder

module 4bitFA(input [3:0] A, B, input cin,
output [3:0] S, output cout);

wire c0, c1, c2;
FA fa0(A[0],B[0],cin,S[0],c0); // implicit binding
FA fa1(.a(A[1]), .b(B[1]), .cin(c0), .s(S[1]), .cout(c1)); // explicit binding
FA fa2(A[2],B[2],c1,S[2],c2);
FA fa3(A[3],B[3],c2,S[3],cout);

endmodule

FA FA FA FA

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

10

Testing the adder
`timescale 1ns/1ns // Add this to the top of your file to set time scale

module testbench();
 reg [3:0] A, B;
 reg C0;
 wire [3:0] S;
 wire C4;
 4bitFA uut (.B(B), .A(A), .cin(C0), .S(S), .cout(C4)); // instantiate adder

 initial // initial blocks run only at the beginning of simulation (only use in testbenches)
 begin
 $monitor($time,"A=%b,B=%b, c_in=%b, c_out=%b, sum = %b\n",A,B,C0,C4,S);
 end
 initial
 begin
 A = 4'd0; B = 4'd0; C0 = 1'b0;
 #50 A = 4'd3; B = 4'd4; // wait 50 ns before next assignment
 #50 A = 4'b0001; B = 4'b0010; // don’t use #n outside of testbenches
 end
endmodule

6

11

Verilog RTL Operators

 Avoid using %, **, and / because you'll run
into problems when trying to synthesis

~ & | ^ ^~Bitwise

== != ===
!===Equality
> < >= <=Relational
! && ||Logical
+ - * / % **Arithmetic

& ~& | ~| ^
^~Reduction
>> << >>> <<<Shift
{ }Concatenation
?:Conditional

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

12

A simple D flip flop (seq. circuit)

 For sequential circuits, use always blocks
 Always blocks (and assign) are executed in

parallel!
module DFF(input clk, d,

output q, q_bar);
reg q, q_bar;
always @ (posedge clk) // triggered on the rising edge of the clock
begin

q <= d; // non-blocking assignment (LHS not updated until later)
q_bar <= ~d;
/* q_bar <= ~q will not function correctly! */

end
endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

7

13

Always blocks in comb. circuits

 Can use continual assignment AND always
blocks for combinational circuits

 Our 1-bit adder using always block
module FA(input a, b, cin,

output s, cout);
reg s, cout; // when using always block, LHS must be reg type
always @ (a or b or cin) // for comb circuits, sensitive to ALL inputs
begin

s = a ^ b ^ cin; // use blocking assignment here (LHS immediately)
cout = (a & b) | (a & cin) | (b & cin);

end
endmodule

14

Quick Note on blocking vs. non-
blocking
 Order of blocking statements matter

 These are not the same

 Order of non-blocking statements doesn’t
 These are the same

 Use non-blocking with sequential, blocking with
combintational

c = a + b;
d = c + e;

d = c + e;
c = a + b;

c <= a + b;
d <= c + e;

d <= c + e;
c <= a + b;

8

15

Tips for maintaining
synthesizability
 Only leaf modules should have functionality

 All other modules are strictly structural, i.e., they only wire together
sub-modules

 Use only positive-edge triggered flip-flops for state
 Do not assign to the same variable from more than one

always block
 Separate combinational logic from sequential logic
 Avoid loops like the plague

 Use for and while loops only for test benches

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

16

Another Example (4 input MUX)
 We can use case

statements within
an always block

module mux4(input a, b, c, d,
input [1:0] sel,
output out);

 reg out;

 always @(*)
 begin
 case (sel)
 2’d0 : out = a;
 2’d1 : out = b;
 2’d2 : out = c;
 2’d3 : out = d;
 default : out = 1’bx;
 endcase
 end

endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

9

17

Finite State Machines (FSMs)

 Useful for designing many different types of
circuits

 3 basic components:
 Combinational logic (next state)
 Sequential logic (store state)
 Output logic

 Different encodings for state:
 Binary (min FF’s), Gray, One hot (good for FPGA),

One cold, etc

18

A simple FSM in Verilog
module simple_fsm(input clk, start,

output restart);

 reg [1:0] state, next_state;
 parameter S0 = 2’b00, S1 = 2’b01, S2 = 2’b10; // binary encode
 always @ (*)
 begin : next_state_logic

case (state)
S0: begin
 if (start) next_state = S1;
 else next_state = S0;
 end
S1: begin next_state = S2; end
S2: begin
 if (restart) next_state = S0;
 else next_state = S2;
 end
default: next_state = S0;
endcase

 end // continued to the right

 // continued from left
 always @ (posedge clk)
 begin: state_assignment
 state <= next_state;
 end

endmodule

10

19

Tips on FSMs

 Don’t forget to handle the default case
 Use two different always blocks for next state

and state assignment
 Can do it in one big block but not as clear

 Outputs can be a mix of combin. and seq.
 Moore Machine: Output only depends on state
 Mealy Machine: Output depends on state and inputs

20

Next step: design your own HW

 Now that you have the basics…
Check out MIT’s 6.375 course webpage

 Thanks to Asanovic & Arvind for slides
 Lectures 2 and 3 on Verilog
 http://csg.csail.mit.edu/6.375/handouts.html

Try making some simple circuits
Beware when Googling for “verilog tutorial”

 A lot of code out there isn’t synthesizable

