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Motivation & Objectives

● Motivation:
– Similarity searching

● Computer vision(e.g. bag-of-words model)

● My (bachelor) work:
– Implementation of KD-tree

● to MESSIF library(Java)

– Indexing many datasets together



  

KD-Tree

● Space-partitioning data structure
● Binary tree
● Splits k-dimensional data each node based on 

one chosen dimension



  

KD-Tree

● Example on 3-D data
● Number in bold is the chosen split dimension



  

Building KD-Tree

● Built recursively
● Choosing for every node:

– split dimension (dim)

– split threshold (t)

● Splits data info left and right subtree
– Lower data into left subtree (item[dim] < t)

– All others into right subtree (item[dim] >= t)



  

Split Dimension

● Originally, split dimensions were chosen 
ciclically(1, 2, 3, 1...)

● In our implementation, we use VLFeat's 
approach(VLFeat.org)
– Decision based on variance in all dimensions over 

all data

– One of the few highest-variance dimensions is 
chosen at random and set as split dimension



  

Split Threshold

● Can be mean or median
● Median approach is used by default 

– balanced tree

● Data are then sorted by comparing the split 
dimension values and are split into subtrees



  

Leaf Node

● Only 1 datum given to the next node → datum 
is saved in the leaf node
– Last level of nodes

– After all leaf nodes are created, building of the tree 
ends



  

Searching in KD-Tree

● k-NN query (k-nearest 
neighbors) is 
implemented
– Green dot = query

– Triangles = data
– Solid line circle

● k = 3

– Dashed line circle
● k = 5 



  

k-NN search

● Searches recursively
● Priority queue of nodes is handled 
● Lower-bounds are computed for each node in the 

queue
– minimal possible-distance answer that can be found in the 

node's subtree

● Search prioritizing based on the node's split dimension
– query[split dimension] < split threshold → left child node 

is next, right child node is put into queue and vice versa



  

Leaf Node

● When the leaf node is reached, distance between the 
query and the datum in the leaf is computed

● Distance is compared to the highest-distance answer 
(found until now)
– If (distance > highest-answer distance) → vector is not 

inserted

– If  (distance < highest-answer distance) → vector is inserted 
and the highest distance answer is thrown out

● After this, next node from priority queue is taken for 
next searching etc.



  

Stop condition

● If (highest-distance of answers < lowest-bound 
of nodes) → the search ends

● Stop condition is hardly achieved when the data 
are of high dimensionality
– “Curse of dimensionality”

– Can be solved by approximation



  

Approximation

● As the distance computation is the most 
costly operation, maximum number of these 
can be preset

● Choosing the right number is a problem yet to 
be solved(depends on how accurate the 
answer is needed, number of data, 
dimensionality etc.)



  

Randomized KD-Forest

● Same principle as KD-tree, but more trees
●  Build:

– As the split dimensions are chosen at random(partly), all 
trees are built differently

● Search:
– One priority queue of nodes handles all trees(“jumping 

between trees”)

● Randomized forests have been found to be 
effective at approximate searches



  

Many Dataset Experiment

● Experiment motivation:
– Build a tree with more independent datasets

● Datasets share the same data space

– Searching for k answers in every dataset (k * 
number of datasets = number of all answers)



  

Many Dataset Customization

● Build:
– Same as regular KD-tree

+ Dataset id is remembered for each data

● Search: 
– Same as regular KD-tree

+ Answers for every dataset are separate

+ Stop condition is calculated based on the highest- 
   answer distance from all datasets



  

Testing System Specifications

● Processor: AMD A4-3310mx
● OS: Win7 64-bit
● RAM: 4GB(3,48GB)
● IDE: 

– Netbeans 8.0.1(Java)

– Microsoft Visual C++ 2008 Express Edition(C)



  

Mine(Java) vs VLFeat(C)

Search time in ms
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– Number of objects: 10 000
– K: 100
– Dimensionality: 128
– Number of trees: 1
– 10 000 Distance Computations for both



  

Approximation Test
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– Number of objects: 10 000

– K: 200

– Dimensionality: 128

– Number of trees: 1



  

Many Dataset Results

● No real statistics (sorry)
● Distance computations on low-dimension data 

looks fine
● Operation time looks bad for now (possible bad 

implementation)
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