

KD-Tree Implementation and Many
Dataset Customization

Erik Hasprunár
396122@mail.muni.cz

Motivation & Objectives

● Motivation:
– Similarity searching

● Computer vision(e.g. bag-of-words model)

● My (bachelor) work:
– Implementation of KD-tree

● to MESSIF library(Java)

– Indexing many datasets together

KD-Tree

● Space-partitioning data structure
● Binary tree
● Splits k-dimensional data each node based on

one chosen dimension

KD-Tree

● Example on 3-D data
● Number in bold is the chosen split dimension

Building KD-Tree

● Built recursively
● Choosing for every node:

– split dimension (dim)

– split threshold (t)

● Splits data info left and right subtree
– Lower data into left subtree (item[dim] < t)

– All others into right subtree (item[dim] >= t)

Split Dimension

● Originally, split dimensions were chosen
ciclically(1, 2, 3, 1...)

● In our implementation, we use VLFeat's
approach(VLFeat.org)
– Decision based on variance in all dimensions over

all data

– One of the few highest-variance dimensions is
chosen at random and set as split dimension

Split Threshold

● Can be mean or median
● Median approach is used by default

– balanced tree

● Data are then sorted by comparing the split
dimension values and are split into subtrees

Leaf Node

● Only 1 datum given to the next node → datum
is saved in the leaf node
– Last level of nodes

– After all leaf nodes are created, building of the tree
ends

Searching in KD-Tree

● k-NN query (k-nearest
neighbors) is
implemented
– Green dot = query

– Triangles = data
– Solid line circle

● k = 3

– Dashed line circle
● k = 5

k-NN search

● Searches recursively
● Priority queue of nodes is handled
● Lower-bounds are computed for each node in the

queue
– minimal possible-distance answer that can be found in the

node's subtree

● Search prioritizing based on the node's split dimension
– query[split dimension] < split threshold → left child node

is next, right child node is put into queue and vice versa

Leaf Node

● When the leaf node is reached, distance between the
query and the datum in the leaf is computed

● Distance is compared to the highest-distance answer
(found until now)
– If (distance > highest-answer distance) → vector is not

inserted

– If (distance < highest-answer distance) → vector is inserted
and the highest distance answer is thrown out

● After this, next node from priority queue is taken for
next searching etc.

Stop condition

● If (highest-distance of answers < lowest-bound
of nodes) → the search ends

● Stop condition is hardly achieved when the data
are of high dimensionality
– “Curse of dimensionality”

– Can be solved by approximation

Approximation

● As the distance computation is the most
costly operation, maximum number of these
can be preset

● Choosing the right number is a problem yet to
be solved(depends on how accurate the
answer is needed, number of data,
dimensionality etc.)

Randomized KD-Forest

● Same principle as KD-tree, but more trees
● Build:

– As the split dimensions are chosen at random(partly), all
trees are built differently

● Search:
– One priority queue of nodes handles all trees(“jumping

between trees”)

● Randomized forests have been found to be
effective at approximate searches

Many Dataset Experiment

● Experiment motivation:
– Build a tree with more independent datasets

● Datasets share the same data space

– Searching for k answers in every dataset (k *
number of datasets = number of all answers)

Many Dataset Customization

● Build:
– Same as regular KD-tree

+ Dataset id is remembered for each data

● Search:
– Same as regular KD-tree

+ Answers for every dataset are separate

+ Stop condition is calculated based on the highest-
 answer distance from all datasets

Testing System Specifications

● Processor: AMD A4-3310mx
● OS: Win7 64-bit
● RAM: 4GB(3,48GB)
● IDE:

– Netbeans 8.0.1(Java)

– Microsoft Visual C++ 2008 Express Edition(C)

Mine(Java) vs VLFeat(C)

Search time in ms

0 5 10 15 20 25 30

Java

C

– Number of objects: 10 000
– K: 100
– Dimensionality: 128
– Number of trees: 1
– 10 000 Distance Computations for both

Approximation Test

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

NMRR

– Number of objects: 10 000

– K: 200

– Dimensionality: 128

– Number of trees: 1

Many Dataset Results

● No real statistics (sorry)
● Distance computations on low-dimension data

looks fine
● Operation time looks bad for now (possible bad

implementation)

	Snímka 1
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20

