Towards Fast Multimedia Feature Extraction: Hadoop or Storm

David Mera, Michal Batko and Pavel Zezula

Laboratory of Data Intensive Systems and Applications (DISA) Masaryk University Brno, Czech Republic

IEEE International Symposium on Multimedia 2014 Taichung - December 12th, 2014

1 Introduction

- 2 Main goals
- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

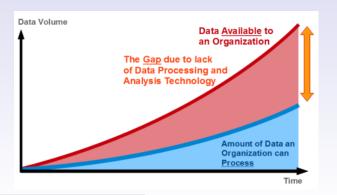
(日)

(日)

(日)

(日)

(日)


(日)

1 Introduction

- 2 Main goals
- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

Introduction Big Data

- "90% of the data in the world today has been created in the last two years", 2013¹
- Huge new datasets are constantly created.
- Organizations have potential access to a wealth of information, but they do not know how to get value out of it

Multimedia Big Data

- 100 hours of video are uploaded to YouTube every minute
- 350 millions of photos are uploaded every day to Facebook (2012)
- Each day, 60 million photos are uploaded on Instagram

...

Getting information from large volumes of multimedia data

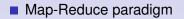
- Content-based retrieval techniques
- Findability problem
 - $\blacksquare \ \ \mathsf{Extraction} \ \ \mathsf{of} \ \mathsf{suitable} \ \mathsf{features} \to \mathsf{Time-consuming} \ \mathsf{task}$
- Feature extraction approaches
 - Sequential approach \rightarrow not affordable
 - Distributed computing: Cluster computing, Grid computing
 - High computer skills
 - 'Ad-hoc' approaches \rightarrow Low reusability.
 - Lack of handling failures
 - Distributed computing: Big data approaches
 - Batch data: Map-Reduce paradigm (Apache Hadoop)
 - Real-time data processing: S4, Apache Storm

1 Introduction

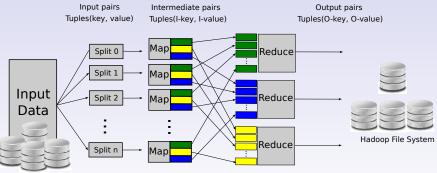
2 Main goals

- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

Main objective

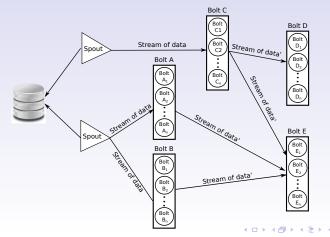

To compare several distributed computing processing frameworks in order to extract suitable features from a multimedia dataset. Specifically, the comparative will be focused on Apache Hadoop³ and Apache Storm⁴.

³Apache Hadoop: hadoop.apache.org ⁴Apache Storm: storm.apache.org


1 Introduction

2 Main goals

- 3 Processing frameworks
 - 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work


Hadoop File System

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�()~

Processing frameworks Apache Storm

- Storm runs topologies
 - Streams: unbounded sequence of tuples
 - Spouts: source of streams
 - Bolts: input streams \rightarrow some processing \rightarrow new streams

1 Introduction

- 2 Main goals
- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

Case-study: basis

The feature extraction of images stored into external datasets. The resulting features must be placed in a distributed organizational storage.

Sub-scenario I

The external dataset must only be processed once.

Sub-scenario II

The external dataset could be processed several times.

Sub-scenario III

The external dataset could be processed several times. However, raw data can not be internally stored due to legal restrictions.

1 Introduction

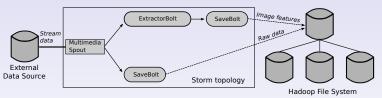
- 2 Main goals
- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

Infrastructure and datasets

Hardware infrastructure - DISA cluster (4 nodes)

- 2 x Intel-E5405@2Ghz CPUs
- 8-physical cores
- 16GB of RAM
- 500GB SAS disk
- Gigabit ethernet
- Dataset
 - One million of JPEG images
 - Average size: 61.9 KB
 - Total size: 61 GB
- Testing subsets
 - 10,000 images
 - 100,000 images
 - 1,000,000 images

1 Introduction


- 2 Main goals
- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

Empirical evaluation Testing jobs

Apache Hadoop - MapReduce Job

- Job for retrieving external multimedia datasets and store them into the HDFS as SequenceFiles
- Job for extracting image features

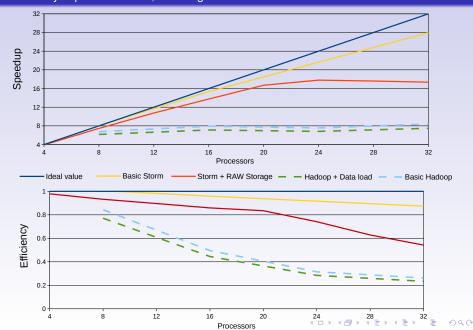
Apache Storm - Topology

- Extraction of MPEG-7 image descriptors: MESSIF library extractor⁵
 - Feature extraction ≈ 0.5 sec per image.

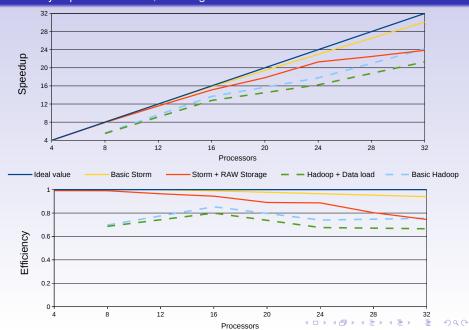
⁵M. Batko, D. Novak, and P. Zezula, "Messif: Metric similarity search implementation framework", in Digital Libraries: Research and Development. Springer, 2007.

The Speedup 'S' measures how the rate of doing work increases with the number of processors k, compared to one processor

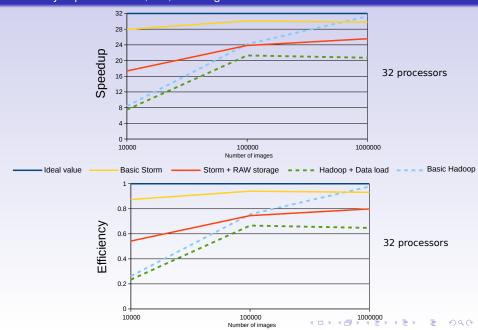
(日) (日) (日) (日) (日) (日) (日)

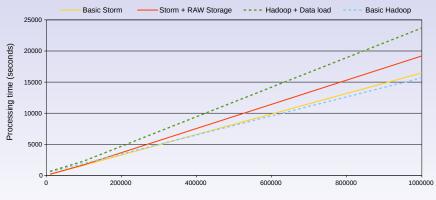

- $\blacksquare S(k) = SeqJob(data) \div ParallelJob(data, k).$
- Ideally, S(k) = k
- Efficiency 'E' measures the work rate per processor

$$\bullet E(k) = S(k) \div k$$


 $\blacksquare \text{ Ideally, } E(k) = 1$

Processing time


Empirical evaluation Scalability experiments - 10,000 images



Empirical evaluation Scalability experiments - 100,000 images

Empirical evaluation Scalability experiments - 1,000,000 images

Number of images

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

1 Introduction

- 2 Main goals
- 3 Processing frameworks
- 4 Testing scenarios
- 5 Infrastructure and datasets
- 6 Empirical evaluation
- 7 Conclusions and ongoing work

Conclusions and ongoing work

Sub-scenario 1: external data must only be processed once

- Hadoop is less adecuate due to the data retrieval penalty
- Sub-scenario 2: external data could be processed several times
 - Apache Hadoop take advantage of data internally stored
 - Hybrid solution:
 - The first iteration: Apache Storm
 - The following iterations: Apache Hadoop
 - Exception: small-medium datasets which don't need to be stored
- Sub-scenario 3: external data could be processed several times. However, they cannot be stored.
 - Apache Storm has shown good performance for processing external datasets as long as they do not need to be stored

- Scalability: Storm scales better in small infrastructures, while Hadoop takes advantage of big ones
- Input data management: Hadoop requires data arrangement with small-medium images
- Configuration: Hadoop requires an iterative tuning of its configuration
- Job implementation: Storm is a low-level framework
- Job results: Hadoop must fully process data before showing results

- New experiments
- A general adaptive system for processing multimedia datasets

Towards Fast Multimedia Feature Extraction: Hadoop or Storm

Thank you for your attention! David Mera dmera@mail.muni.cz

