Models of Streaming Applications

Filip Nálepa

Outline

- Motivation
- Components of a streaming application
- Operator placement problem
- Performance models

Motivation

- Infinite sequence of data
- Processing data in motion
- Scenarios
 - Event detection
 - Image stream processing
 - Surveillance video analysis

Staticflickr.com

Streaming Application as a Graph

- Node operator/task
- Edge stream
- Stream infinite sequence of data items/events

Operator Placement

- Assignment of operators to computational resources
- Metrics: throughput, latency

Needed Models

- Model of operator placement problem
 - Purpose: place operators on resources

- Performance model
 - Purpose: retrieve metrics of the system

Improve

Models Use Cases

- Initial operator placement
 - Placement and measurement
- Dynamic adaption to changes
 - Change/problem detection proactive/reactive
 - New placement and verification

Model of Operator Placement Problem

- Computational resources, underlying network
- Streaming graph, operators, streams
- Optimization criteria
- Purpose: place operators on resources

Performance Analysis

- Accuracy vs efficiency
- Simulation and experiments
- Formal methods

Performance model

Standard Event Models

- Periodic
- Periodic with jitter
- Burst period, maximal number of items, minimal distance between items
- Sporadic minimal distance between items
- Advantages: simple, easy to analyze
- Disadvantages: too restrictive, unrealistic assumptions

Real-Time Calculus

- Arrival function $\alpha(\Delta)$ maximal number of data items that can arrive in any time interval of length Δ
- Service function $\beta(\Delta)$ minimal number of data items that can be processed in any time interval of length Δ

Arrival and Service Function

Real-Time Calculus

- Arrival function $\alpha(\Delta)$ maximal number of data items arrived in any time interval of length Δ
- Service function $\beta(\Delta)$ minimal number of data items that can be processed in any time interval of length Δ
- Analysis based on algebraic computations
- Advantage: efficient
- Disadvantage: no state dependencies

Event Count Automata

- Arrival and service function represented as automata
- Automata connected by buffers
- Network of automata described as a Colored Petri Net for analysis
- Advantage: very accurate
- Disadvantage: state-space explosion → inneficient

Performance Analysis Summary

- Simulation easy to use, no guarantees
- Standard event models simple, not accurate
- Real-time calculus efficient, captures burstiness, no state dependencies
- Event count automata accurate, not efficient
- Combinations tradeoffs

Summary

- Streaming application directed graph of operators and streams
- Operator placement problem
- Performance models

Thank you for your attention.