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Artificial neural networks

Computational models inspired by an animal's central nervous systems

Systems of interconnected "neurons" which can compute values from
inputs

Are capable of approximating non-linear functions of their inputs

= Mathematically, a neuron's network function f(x) is defined as a composition

of other functions g,(x), which can further be defined as a composition of
other functions.

=  Known since 1950s

= Typical applications: pattern recognition in speech or images



Artificial neural networks (cont.)
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Artificial neural networks (cont.)

= Network node in detail
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o(x) is the sigmoid function

= Network learning process = tuning the synaptic weights
= [nitialize randomly

= Repeatedly compute the ANN result for a given task, compare with ground
truth, update ANN weights by backpropagation algorithm to improve ANN
performance
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Artificial neural networks — example

= ALVINN system for automatic car driving g - u—
(ANN illustration form [Mitchell97]) s
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Neural networks before 2009(+-) and after

= Before 2009: ANNs typically with 2-3 layers
= Reason 1: computation times

= Reason 2: problems of the backpropagation algorithm
= Local optimization only (needs a good initialization, or re-initialization)
= Prone to over-fitting (too many parameters to estimate, too few labeled examples)

= => Skepticism: A deep network often performed worse than a shallow one

= After 2009: Deep neural networks
* Fast GPU-based implementations

= Weights can be initialized better (Use of unlabeled data, Restricted Boltzmann
Machines)

= Large collections of labeled data available
= Reducing the number of parameters by weight sharing
= Improved backpropagation algorithm

= Success in different areas, e.g. traffic sign recognition, handwritten digits
problem



Convolutional neural networks

= Atype of feed-forward ANN where the individual neurons are tiled in such
a way that they respond to overlapping regions in the visual field

= |Inspired by biological processes
= Widely used for image recognition

=  Multiple layers of small neuron collections which look at small portions of
the input image

= The input hidden units in the m-th layer are connected to a local subset of
units in the (m-1)-th layer, which have spatially contiguous receptive fields
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Convolutional neural networks

= Shared weights: each sparse filter h, is replicated across the entire visual
field. The replicated units form a feature map, which share the same
parametrization, i.e. the same weight vector and the same bias.

=  Weights of the same color are shared, i.e. are feature m
constrained to be identical S L
L , AN A
= Replicating units allows for features to be detected layer m-| (5 b )

regardless of their position in the visual field.
=  Weight sharing greatly reduces the number of free parameters to learn.
= MaxPooling: another important concept of CNNs

= non-linear down-sampling — the input image is partitioned into a set of non-
overlapping rectangles and maximum value is taken for each such sub-region
= Advantages:

= It reduces the computational complexity for upper layers
= |t provides a form of translation invariance
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Krizhevsky 2012: ImageNet neural network

= The ImageNet challenge: recognize 1000 image categories

= Training data: 1.2M manually cleaned training images (obtained by
crowdsourcing)

= Krizhevsky solution: deep convolutional neural network
= 5 convolutional layers, 3 fully connected layers
= 60 million parameters and 650,000 neurons
= New function for nodes (Rectified Linear Units)

= Efficient GPU implementation of NN learning, highly-optimized
implementation of 2D convolution
= Data augmentation
= generating image translations and horizontal reflections

= five 224 x 224 patches (the four corner patches and the center patch) as well as
their horizontal reflection from each 256x256 image

= =>transformation invariance, reduces overfitting

= Additional refinements such as the “dropout” regularization method



Krizhevsky 2012 (cont.)
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= QGreat success!!!
INRIA/Xerox 33%,
Uni Amsterdam 30%,
Uni Oxford 27%,
Uni Tokyo 26%,
Uni Toronto 16% (deep neural network) [Krizhevsky-NIPS-2012]
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Krizhevsky 2012 — more than just classification?

= Indications that the last hidden layers carry semantics!
= Suggestion in [Krizhevsky12]:

= Responses of the last hidden layer can be used as a compact global image
descriptor

= Semantically similar images should have small Euclidean distance
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Convolutional neural network implementations

= cuda-convent

= QOriginal implementation by Alex Krizhevsky

= decaf

= Python framework for training neural networks

= (Caffe
= Convolutional Architecture for Fast Feature Embedding
= Berkeley Vision and Learning Center
= C++/CUDA framework for deep learning and vision
= An active research and development community

= Main advantage in comparison with other implementations: it is FAST
= Wrappers for Python and MATLAB
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DeCAF

= decaf
= Python framework for training neural networks
= Deprecated, replaced by Caffe

= DeCAF
= |mage features derived from neural network trained for the ImageNet
competition

= 3 types: DeCAF., DeCAF,, DeCAF,

= Derived from last 3 hidden layers of the ImageNet neural network
= Descriptor sizes: ??? dimensions for DeCAF., 4096 dimensions for DeCAF,, DeCAF,
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DeCAF (cont.)

= Performance of DeCAF features analyzed in [Donahuel4] in context of
several image classification tasks
= DeCAF not so good

= DeCAF, and DeCAF, very good, in many cases outperform state-of-the-art
descriptors

= DeCAF, typically more successful, but only by small margin

* structure, construction
covering
« commaodity, trade good, good
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*= = invertebrate
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Utilization of DeCAF descriptors

= Recognition of new (unseen in ImageNet) categories by training (a linear)
classifier on top of the DeCAF descriptors
= [Donahuel4]
= [Girshick14]
= Two solutions of ImageCLEF 2014 Scalable Concept Annotation Challenge

= Very good results reported
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Similarity search: MPEG7 vs. DeCAF,

= Similarity search in 20M images; 1t image is the query

MPEG7 descriptors
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Similarity search: MPEG7 vs. DeCAF,

MPEG7 descriptors

Visually similar r Visually similar Visually similar Visually similar Visually similar Visually similar

Visually similar Visually similar

Visually similar Visually similar Visually similar

Visually similar Wisually similar Visually similar Visually similar Visually similar Visually similar Visually similar Visually similar

DeCAF, descriptors

Visually similar

Visually similar

Visually similar

Visually similar Visually similar Visually similar Visually similar

17/22



Similarity search: MPEG7 vs. DeCAF,

MPEG7 descriptors
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Similarity search: MPEG7 vs. DeCAF,
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Literature (cont.)

Other
=  http://caffe.berkeleyvision.org/

= J. Materna: Deep Learning: budoucnost strojového uceni?
http://fulltext.sblog.cz/2013/01/09/deep-learning-budoucnost-strojoveho-uceni/

= J. Cech: A Shallow Introduction into the Deep Machine Learning.
https://cw.felk.cvut.cz/wiki/ media/courses/aedm33mpv/deep learning mpv.pdf

=  Basic explanation of convolutional neural networks principles
http://deeplearning.net/tutorial/lenet.html
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