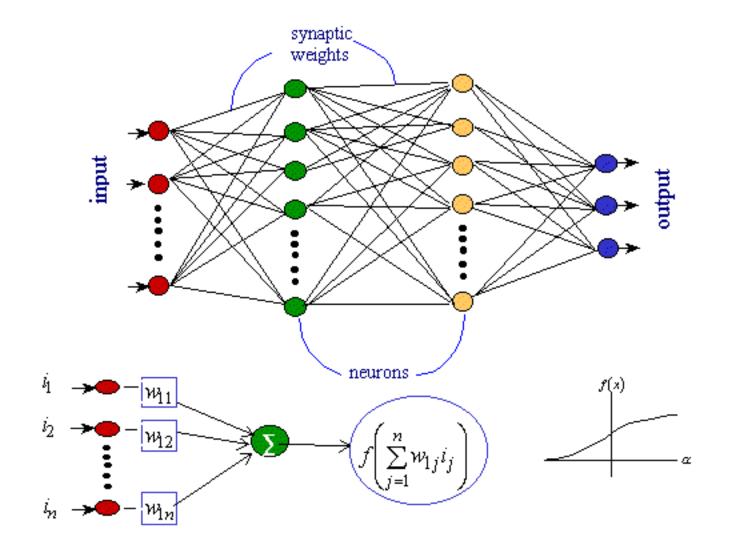
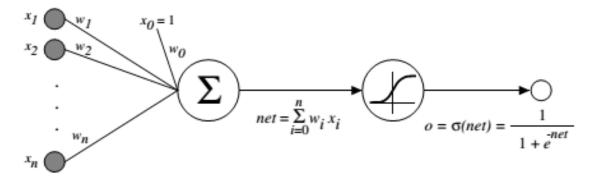

Neural networks in modern image processing

Petra Budíková

DISA seminar, 30. 9. 2014


Artificial neural networks

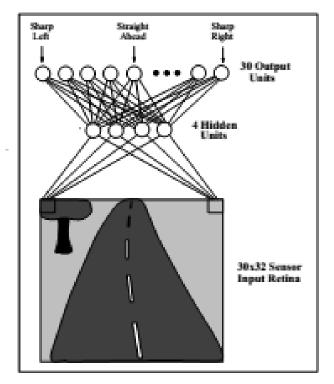
- Computational models inspired by an animal's central nervous systems
- Systems of interconnected "neurons" which can compute values from inputs
- Are capable of approximating non-linear functions of their inputs
 - Mathematically, a neuron's network function *f(x)* is defined as a composition of other functions *g_i(x)*, which can further be defined as a composition of other functions.


- Known since 1950s
- Typical applications: pattern recognition in speech or images

Artificial neural networks (cont.)

Artificial neural networks (cont.)

Network node in detail

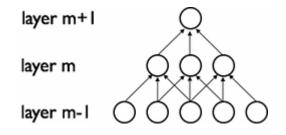

 $\sigma(x)$ is the sigmoid function

- Network learning process = tuning the synaptic weights
 - Initialize randomly
 - Repeatedly compute the ANN result for a given task, compare with ground truth, update ANN weights by *backpropagation* algorithm to improve ANN performance

Artificial neural networks – example

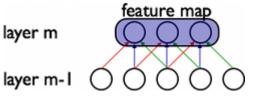
 ALVINN system for automatic car driving (ANN illustration form [Mitchell97])

	ŧ.	-	1	1	P.	-			1.2	67					10		1			1.2		1.1		10	12		11	12			
6	ġ.	ġ,	ġ,									а.	ъ.		æ,	1	-	а.					a.	r.	а.			ъ.		х.	
1		÷	÷							в				ъ.	н.									-		ж.					
			ġ,	ā.	*		-	в	÷	B	ē.		٠	-									÷			÷.	÷	ъ.		÷	ł,
6.	ė,	É,	ė.		н.			n		5	2					ж.	\mathbf{r}	х.				a.			н.	ъ.		а.		1	
6	٥.		÷.		4			ō	2	D	8			1		а.		а.		÷	$\mathcal{L}_{\mathcal{L}}$					ъ.			a,		4
÷.,	Ŀ.		-					٥		5	B	ē,		-		-	-		1								1	ъ.			
÷.,	÷	٠.	8	٠		0	E.	B	φ.	B	B					÷	\mathbf{r}	ά.	÷.							•		\mathbf{r}	•		1
		÷	-	-		Đ.	0	6	0	0	Đ.				-	æ	-			-											8
÷.,	۴.		-			C.		4	C.	0	D	1					۰.	٠		÷	-		1							ч.	
÷.	e.	8	÷	-	0		B			2	0	D,	Ð,			÷	₽.	÷	а.	•		e.			•	•			ч.		1
۰.	Ŀ,	۰.	•								Ð	D	Ð			÷	-	*	٠	٠	-							-		÷	
6		•						2			D	2	0	G.		2	ж.	٠	ч.	R.	х.	4	х.		2	2					1
a -					0	B				D							ь.		8	4	ъ.	4	÷.	-	а,		х,				
÷ -	٠.	۰.	Ð	0	0										e,			ь.	•	4		•	•		5						E
•		٠	0					2						0			•	2	٠	•		а.	٠		۰.	•					E
н.	8	0	0	D			Р.				9								ч.	R		*	÷.		•		×.	а,		0	E.
	2	B	B			х.	-	4	1		2		1		Ð	P		2	٠	-	а,		4	٠	٠	•	4	ч.		4	C
			D		٠		-	•	2		2	2		0	0		0			٠		٠			η.	0	•	•			G
								2						0			0	P.			1	٠	•		а,	2	2	а,			G
	2	2					\mathbf{r}	8	в.		4			а.		0	2	0		ъ	*			•	а,		2				G
			u		с,		е.	2	16.	2	4									ъ	•		٠	٠	٠		2	9		D	E
			2	2	٠	٠		٠	*	•	1					9	4	9		•		*		+	٠	•			•		
	F.	Q.		1		T	-	7						P		4	Q				7	-	1								
		1	P		4				h.	E.						H	G.	P	C)			*				-	-	4			
1	1	-			-		•	-	2	-	5	14.			E.	G	1	9	E.		1	-	4		٠		÷	-	12		
		*	-	-	*	*	+	*	٠	E	-	1		2	H			i.		2			*	2	*	٠	*				
		•			٠		2	2			1			9	H	H	ы	ы					1			5	1			2	
			-	-	-	*	4			1	1		1		63		Q2	13	62	2			-				*	1	4		F


人名英国德国德国德国 化乙基基苯基乙基 化乙基乙基基苯基乙基

Neural networks before 2009(+-) and after

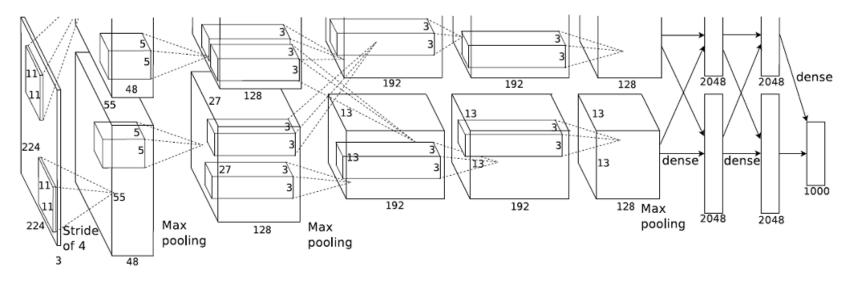
- Before 2009: ANNs typically with 2-3 layers
 - Reason 1: computation times
 - Reason 2: problems of the backpropagation algorithm
 - Local optimization only (needs a good initialization, or re-initialization)
 - Prone to over-fitting (too many parameters to estimate, too few labeled examples)
 - = > Skepticism: A deep network often performed worse than a shallow one
- After 2009: Deep neural networks
 - Fast GPU-based implementations
 - Weights can be initialized better (Use of unlabeled data, Restricted Boltzmann Machines)
 - Large collections of labeled data available
 - Reducing the number of parameters by weight sharing
 - Improved backpropagation algorithm
 - Success in different areas, e.g. traffic sign recognition, handwritten digits problem


Convolutional neural networks

- A type of feed-forward ANN where the individual neurons are tiled in such a way that they respond to overlapping regions in the visual field
 - Inspired by biological processes
 - Widely used for image recognition
- Multiple layers of small neuron collections which look at small portions of the input image
 - The input hidden units in the m-th layer are connected to a local subset of units in the (m-1)-th layer, which have spatially contiguous receptive fields

Convolutional neural networks

- Shared weights: each sparse filter h_i is replicated across the entire visual field. The replicated units form a feature map, which share the same parametrization, i.e. the same weight vector and the same bias.
 - Weights of the same color are shared, i.e. are constrained to be identical
 - Replicating units allows for features to be detected regardless of their position in the visual field.



- Weight sharing greatly reduces the number of free parameters to learn.
- MaxPooling: another important concept of CNNs
 - non-linear down-sampling the input image is partitioned into a set of nonoverlapping rectangles and maximum value is taken for each such sub-region
 - Advantages:
 - It reduces the computational complexity for upper layers
 - It provides a form of translation invariance

Krizhevsky 2012: ImageNet neural network

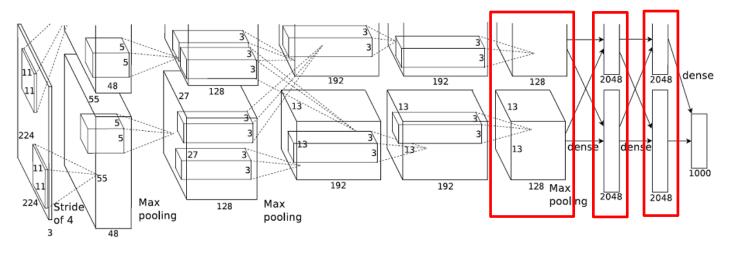
- The ImageNet challenge: recognize 1000 image categories
 - Training data: 1.2M manually cleaned training images (obtained by crowdsourcing)
- Krizhevsky solution: deep convolutional neural network
 - 5 convolutional layers, 3 fully connected layers
 - 60 million parameters and 650,000 neurons
 - New function for nodes (Rectified Linear Units)
 - Efficient GPU implementation of NN learning, highly-optimized implementation of 2D convolution
 - Data augmentation
 - generating image translations and horizontal reflections
 - five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal reflection from each 256×256 image
 - = > transformation invariance, reduces overfitting
 - Additional refinements such as the "dropout" regularization method

Krizhevsky 2012 (cont.)

Great success!!!

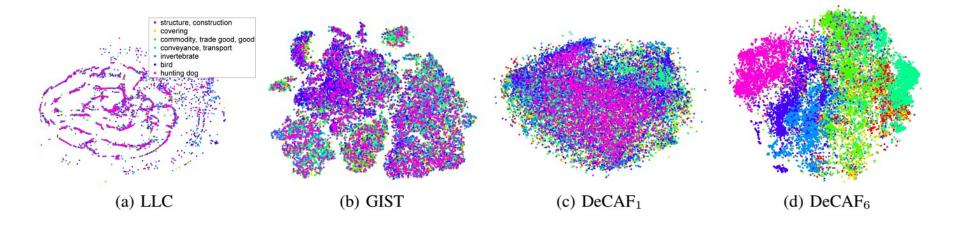
INRIA/Xerox	33%,
Uni Amsterdam	30%,
Uni Oxford	27%,
Uni Tokyo	26%,
Uni Toronto	16% (deep neural network) [Krizhevsky-NIPS-2012]

Krizhevsky 2012 – more than just classification?


- Indications that the last hidden layers carry semantics!
- Suggestion in [Krizhevsky12]:
 - Responses of the last hidden layer can be used as a compact global image descriptor
 - Semantically similar images should have small Euclidean distance

Convolutional neural network implementations

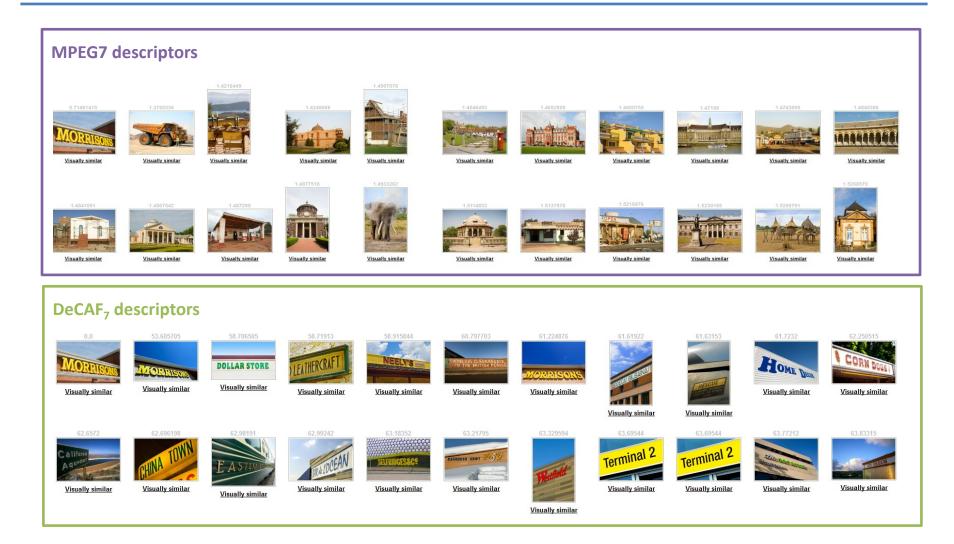
- cuda-convent
 - Original implementation by Alex Krizhevsky
- decaf
 - Python framework for training neural networks
- Caffe
 - Convolutional Architecture for Fast Feature Embedding
 - Berkeley Vision and Learning Center
 - C++/CUDA framework for deep learning and vision
 - An active research and development community
 - Main advantage in comparison with other implementations: it is FAST
 - Wrappers for Python and MATLAB


DeCAF

- decaf
 - Python framework for training neural networks
 - Deprecated, replaced by Caffe
- DeCAF
 - Image features derived from neural network trained for the ImageNet competition
 - 3 types: DeCAF₅, DeCAF₆, DeCAF₇
 - Derived from last 3 hidden layers of the ImageNet neural network
 - Descriptor sizes: ??? dimensions for DeCAF₅, 4096 dimensions for DeCAF₆, DeCAF₇

DeCAF (cont.)

- Performance of DeCAF features analyzed in [Donahue14] in context of several image classification tasks
 - DeCAF₅ not so good
 - DeCAF₆ and DeCAF₇ very good, in many cases outperform state-of-the-art descriptors
 - DeCAF₆ typically more successful, but only by small margin


Utilization of DeCAF descriptors

- Recognition of new (unseen in ImageNet) categories by training (a linear) classifier on top of the DeCAF descriptors
 - [Donahue14]
 - [Girshick14]
 - Two solutions of ImageCLEF 2014 Scalable Concept Annotation Challenge
 - ...
- Very good results reported

Similarity search in 20M images; 1st image is the query

MPEG7	descriptors									
0.57837236	1185175 Visually similar	tissipot Visually similar	L2743005 Visually similar	1.2745945 Visually similar	12846428 Visually similar	4 284942	4.2930695	L2975335	4 3008232	1.3045986
1.3157296	1.3165793	1.3297047	1.3292875	1.341132	L 2465251	1.342299	4.3615301	1.552183	1.3538932	1.3557346
<u>Visually similar</u>	Visually similar	<u>Visually similar</u>	<u>Visually similar</u>	<u>Visually similar</u>	vistany sinna					
	Usually similar		<u>Visually similar</u>	visuany similar						
			49.5143 Visually similar Visually similar	52.509804 Visually similar	53.188545 Si Si S	53.3945 Visually similar	53.497967 Tisually similar	53.531136 Visually similar	53.73039 Simular Simular	53.98935 Tisually similar

MPEG7 descriptors

Visually similar

Visually similar

Visually similar

Visually similar

Visually similar

Visually similar

Visually similar

Visually similar

Visually similar

Visually similar

DeCAF₇ descriptors

Visually similar

Visually similar

Visually similar

MPEG7 descriptors Visually similar **DeCAF₇ descriptors** 58.990555 Visually similar 65.54124 64.31931 Visually similar Visually similar

Literature

Books

[Mitchell97] T. Mitchell. Machine Learning. ISBN 978-0070428072. McGraw Hill, 1997.

Research papers

- [Donahue14] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. *Decaf: A deep convolutional activation feature for generic visual recognition*. ICML, 2014.
- [Girshick14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. *Rich feature hierarchies for accurate object detection and semantic segmentation*. CVPR, 2014.
- [Jia14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell. *Caffe: An Open Source Convolutional Architecture for Fast Feature Embedding*. Submitted to ACM MULTIMEDIA 2014 Open Source Software Competition.
- [Krizhevsky12] A. Krizhevsky, I. Sutskever, G. E. Hinton: *ImageNet Classification with Deep Convolutional Neural Networks*. NIPS 2012.

Literature (cont.)

Other

- <u>http://caffe.berkeleyvision.org/</u>
- J. Materna: Deep Learning: budoucnost strojového učení? <u>http://fulltext.sblog.cz/2013/01/09/deep-learning-budoucnost-strojoveho-uceni/</u>
- J. Čech: A Shallow Introduction into the Deep Machine Learning. <u>https://cw.felk.cvut.cz/wiki/ media/courses/ae4m33mpv/deep learning mpv.pdf</u>
- Basic explanation of convolutional neural networks principles <u>http://deeplearning.net/tutorial/lenet.html</u>