Relevance Feedback Survey

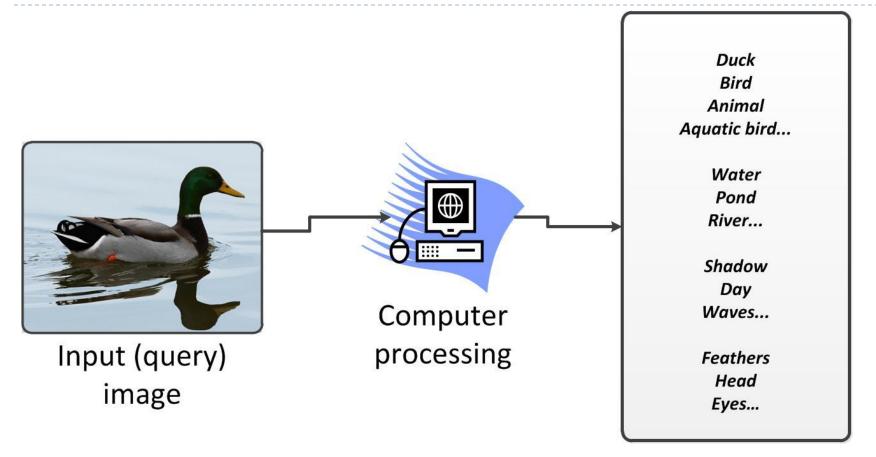
Jan Botorek

4.11.2014

Outline of the presentation

I) MUFIN Annotation Tool

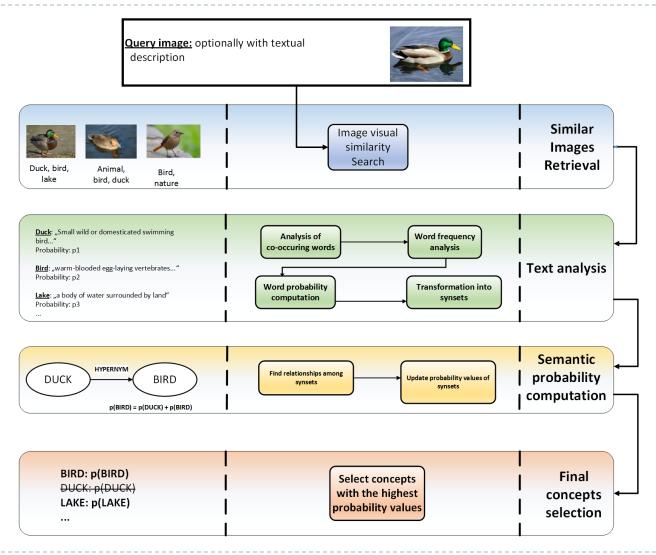
Current situation, future direction

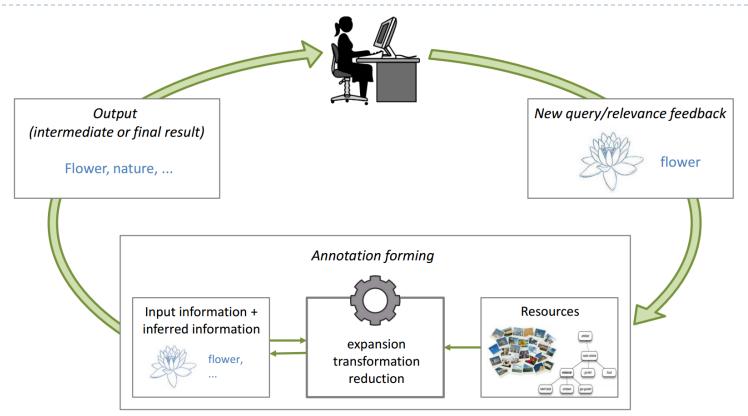

> 2) Relevance Feedback

- General overview
- Approaches

3) RF for MUFIN Annotation Tool

- Specific requirements
- RF Tool design


MUFIN Annotation Tool I.


Main goal = automatically annotate unknown images with relevant descriptive words

MUFIN Annotation Tool II.

D

Relevance Feedback I. (Motivation)

- Incorporate a human factor to the annotation process
- "Iterative evaluation of particular system behavior conducted by system users"

Relevance Feedback II.

- Relevance Feedback idea:
 - take results that are returned from a given query processing
 - provide results to users for relevance evaluation

 utilize user-provided information about whether or not those results are relevant to perform a new (improved) query

Relevance Feedback III.

First application: documents search

- Relevance evaluation of retrieved documents
- Most of RF studies aimed to text-based application

Developed into a widely used technology

- Text retrieval social networks
- CBIR evaluation of visually similar images

Relevance Feedback IV. (Basic Terminology)

Query object (Qo):

- The "original"
- > The object that the retrieval process is based on
- "Query subjects are meant to be as similar as possible"

Query subjects(Qs):

Subjects of user's relevance evaluation

Iteration (I):

An evaluation run performed by user of the RF system

Evaluation (E):

Relevance value assignment by user to particular query result

Relevance Feedback V. - Approaches

Boolean model

The simplest one – based on the strict match of query/documents

Vector-space model

- A document is represented by a vector
- Model is based on vector operations in particular vector space

Probability model

- A document is also represented by a vector BUT the vector space is replaced by a probability function
- Logic (language) model
 - Utilizes logic interference in conjunction with some knowledge source (e.g. ontology)

Vector-space model I.

Selected as a base to our further consideration

- Relatively simple; widely used approach to RF
- Vector space \rightarrow allows vector operations

Document (object) needs some vector representation

- Defined by Tf-idf values of words within document space
- Each vector has particular dimension
- Each element of a vector represents a tf-idf value of a particular word from within a set of all words of a particular database
- Distance may be measured among documents (vectors)
 E.g. Cosine distance

Vector-space model II.

tf-idf

- tf(t,d) (Term Frequency) = integer number expressing a frequency of a term t in a document d
- idf(t) (Inverse Document Frequency) =

$$\mathrm{idf}_t = \log \frac{N}{\mathrm{df}_t}.$$

- \square N = number of all documents in the collection
- \Box df = number of documents containing term t
- log = more frequent terms have lower value then less frequent ones
- tf-idf(t,d) = tf(t,d) . idf(t)

Vector-space model III. (Similarity measure)

• Cosine similarity

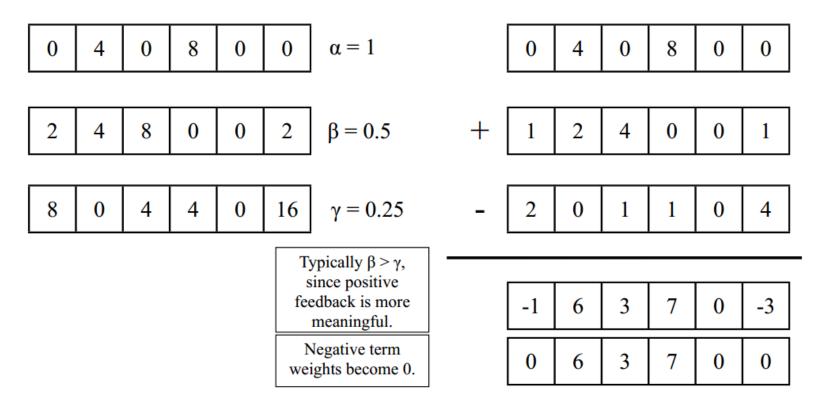
• The most fundamental approach to measure similarity of two vectors $\vec{u}(A) = \vec{u}(A)$

$$\sin(d_1, d_2) = \frac{V(d_1) \cdot V(d_2)}{|\vec{V}(d_1)||\vec{V}(d_2)|},$$

- Nominator: "dot product" / Inner product
- Denominator: Euclidian distance
 - Normalization of vector lengths

$$\sqrt{\sum_{i=1}^{M} \vec{V}_i^2(d)}$$
.

Rocchio's formula = baseline of the Vector model approach


$$\overrightarrow{Q_m} = \left(a \cdot \overrightarrow{Q_o}\right) + \left(b \cdot \frac{1}{|D_r|} \cdot \sum_{\overrightarrow{D_j} \in D_r} \overrightarrow{D_j}\right) - \left(c \cdot \frac{1}{|D_{nr}|} \cdot \sum_{\overrightarrow{D_k} \in D_{nr}} \overrightarrow{D_k}\right)$$

- Related/unrelated documents
- Constants a, b, c influence the importance of particular equation component (original, positive, negative)

Variable	Value
$\overrightarrow{Q_m}$	Modified Query Vector
$\overrightarrow{Q_o}$	Original Query Vector
$\overrightarrow{D_j}$	Related Document Vector
$\overrightarrow{D_k}$	Non-Related Document Vector
a	Original Query Weight
b	Related Documents Weight
c	Non-Related Documents Weight
D_r	Set of Related Documents
D_{nr}	Set of Non-Related Documents

Vector-space model V. (Rocchio Example)

new query vector = $\alpha \cdot \text{original query vector} + \beta \cdot \text{relevant document vectors} - \gamma \cdot \text{non-relevant document vectors}$

RF for annotations I.

- Text object RF vector:
 - If in document collection C(d),
 there are only 6 words (w1..w6) repeating,

- ▶ then Vd = (10,0,3,1,7,0) → document d contains 10x w1; 3x w3; 1x w4 and 7x w5
- Document is composed of text pieces = words are repeated
- Evaluation of documents as a whole
- The evaluator evaluates same objects (documents) as he/she searches for (document)

RF for annotations II.

Image object RF vector:

- If in image collection C(i), there are only 6 words (w1 .. w6) repeating,
- ▶ then Vi = (1,0,1,1,1,0) → image c annotation consists of words w1,w3,w4,w5

- Image description is (typically) composed from separate keywords; not repeating
- Photos can be considered as a SHORT text document
 - Composed of only keywords
- Evaluation of textual descriptions of image
- Evaluators evaluate different objects (keywords) than he/she searches for (images)

RF for annotations III. (Our situation)

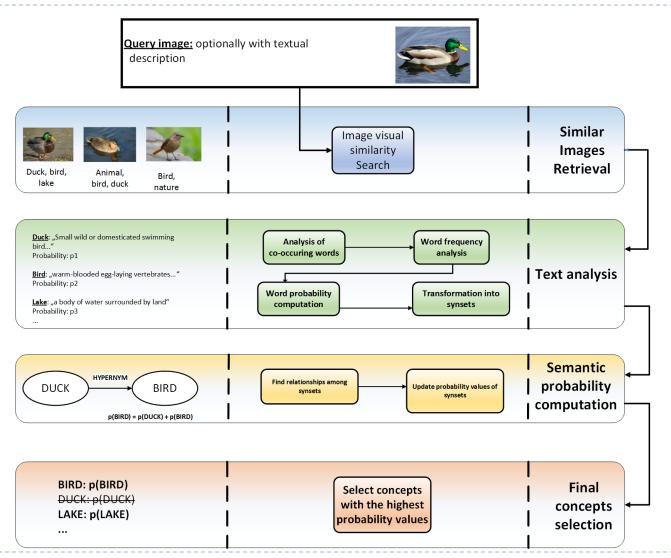
Our situation: Visual query(image) + textual description

- I. Iteration = image + (user-provided) optionally textual description
- II. Iteration = image + (RF-based) textual description
- III. Iteration = image + (RF-based) improved textual description

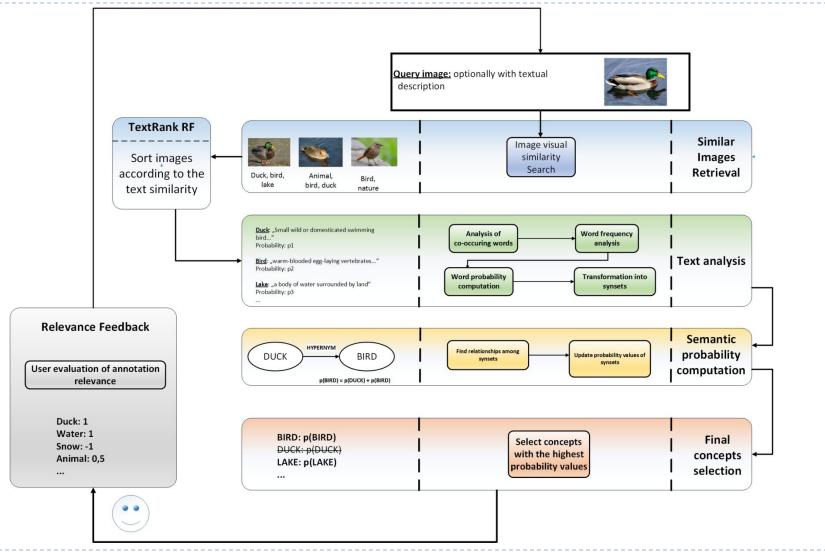
• • • • •

• RF is utilized ONLY in the textual part of the query

RF for annotations IV. (Our demands)


Include also negative RF

Short description → only positive evaluation probably is not sufficient; it is desired to handicap the non-relevant concepts


Better scalability of evaluation

- Incorporate more levels of evaluation
- Ability to emphasize the positivness or negativness of particular word
- So far (Rocchio) only 2 scale levels = we require more general approach

Proposed Image Annotation RF Approach I. (reminder)

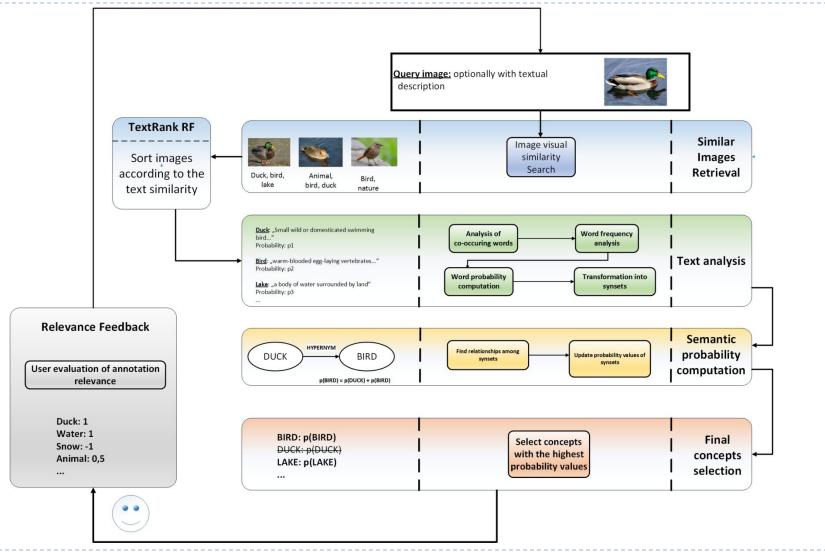
Proposed Image Annotation RF Approach II.

D

Proposed Image Annotation RF Approach III.

RF: First iteration:

- ▶ Initial vector Q_0 is empty \rightarrow former query was not evaluated
- ► User evaluates words → relevant (Q_r) & non-relevant (Q_{nr}) query vectors are constructed directly
- I) Animal: 0,5
- 2) Dog: I
- 3) Plant: I
- → Q_r : (0.5, 1, 0)
- → Q_{nr}: (0,0,1)


$$\overrightarrow{Q_m} = \left(a \cdot \overrightarrow{Q_o}\right) + \left(b \cdot \frac{1}{|D_r|} \cdot \sum_{\overrightarrow{D_j} \in D_r} \overrightarrow{D_j}\right) - \left(c \cdot \frac{1}{|D_{nr}|} \cdot \sum_{\overrightarrow{D_k} \in D_{nr}} \overrightarrow{D_k}\right)$$

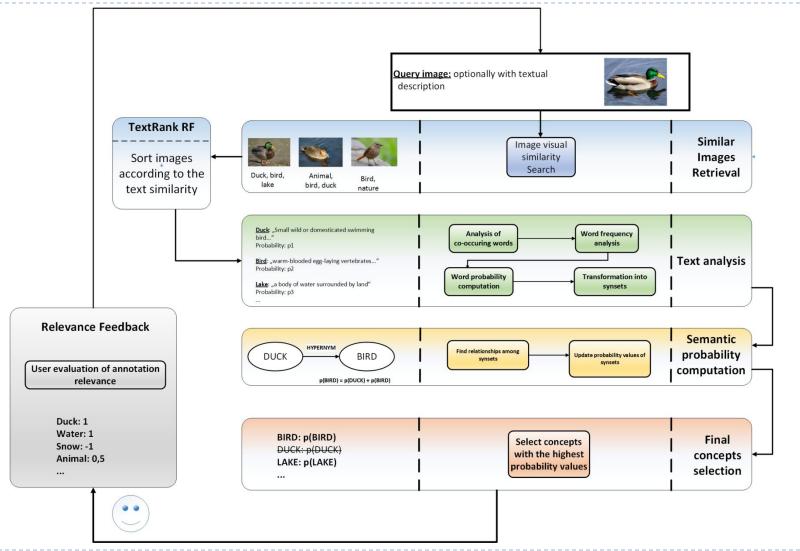
Proposed Image Annotation RF Approach IV.

RF: Subsequent iterations:

- Initial vector Q₀ is NOT empty → former queries were evaluated
 - □ Qr : (0.5, 1, 0) (animal, dog, plant)
 - \Box Qnr: (0,0,1) (animal, dog, plant)
- Qr' and Qnr' are constructed as follows:
 - If new word occurs, is added into Q'
 - If already presented word is evaluated \rightarrow average value is constructed
- I) Animal: I
- > 2) Plant: 0,5
- 3) Poodle: I
- $Q_{r} = (0.75, 1, 0, 1) \qquad Q_{nr} = (0, 0, 0.25, 0)$
 - □ (animal, dog, plant, poodle)

Proposed Image Annotation RF Approach V.

D


Proposed Image Annotation RF Approach VI.

Text Ranking:

- Visually similar images are transformed into word vectors

 visually similar images LIMITS the scope of text ranking
- Cosine similarity is computed between the query vector and similar image vectors
 - Both for relevant and non-relevant initial vectors
- According to the similarity values similar images are ranked into two lists: by relevance and by non-relevance
- Output of the Text Ranking component is formed by combination of constructed two ranked lists

Proposed Image Annotation RF Approach VII.

D