
Inverted Index 
Implementation

Adam Hadraba
hadraba.adam@gmail.com



Table of contents

• Introduction

• Implementation

• Construction

• Compression



Introduction

• Inverted index is structure that provides 
background for:

• Processing large number of queries over massive 
amount of data each second

• “Fast” response & dealing w/ hardware limitations

• Different kinds of queries

• Data set changes

• Ranking results



Inverted index

•Most common indexing method used in IR systems

•Way to avoid linearly scanning the texts
• Index in advace

•Widely used in search engines

•Normally, documents – lists of words
• Inverted index — for each word lists of documents



Inverted index cont.

Dictionary

Term DocFreq

able 20

about 5

above 7

...

Posting lists

docID docID docID docID docID ...

1 4 5 7 12 ...

2 4 5 6 10 ...

5 8 12 25 100 ...

...



Data

• Profimedia database:
• 20 000 000 documents
• Each document around 50 annotations in english
• 360 000 unique annotations
• Approx. size of 4.5 GB
• Terms occured in 1 to 3 500 000 documents

• No stop words

• Annotations unique per document (no need for term 
frequency)

• No position of term in document



Implementation

• IR engine has two main components
• Indexing documents

• Query processing

• Requirements
• Scalability

• Handling big collection of data

• Index efficiency
• Index must be constructed in reasonable amount of time

• Query efficiency and effectivness
• Queries must run fast and the result set must be relevant



Indexing documents

File

IndexWriter Index

Documents
<docID, doc>

Dictionary
<term, termID>

PostingList
<termID,<docID>>

FileParser



Indexing documents cont.

• Dictionary <term, termID>
• Stored in memory as a HashMap

• Serves as lookup structure on top of the posting lists

• PostingList <termID, <docID>>
• Majority of data are here – stored on disc

• During query processing are the query term‘s loaded into memory

• Documents <docID, doc>
• Stored on disc

• Other supporting structures – offsets and skip lists to increase 
lookup efficiency



Query processing

Query

IndexReader

Index

QueryParser Query

Result



Index Construction



Possible approaches

• Memory-based
• For each document indentify distinct terms and update posting 

list for each term in memory

• Pro: very fast algorithm, easy to implement

• Con: Does not work when you run out of memory

• Blocked sort-based (sort-inversion)
• Sorting

• Merging (2-way, multi-way)

• Single-pass in-memory indexing
• When dictionary does not fit into memory

• Each block has own dictioary



Disc-based index construction

• Phase I
• Create temp files of pairs <termID, docID>

termID docID

1 1

5 4

2 5

1 5

6 5

2 6

2 2

termID docID

4 5

2 4

1 7

3 1

7 6

3 5

2 8

Run 1: Run 2:



Disc-based index construction cont.

• Phase II
• Sort the pairs in each run

termID docID

1 1

1 5

2 2

2 5

2 6

5 4

6 5

termID docID

1 7

2 4

2 8

3 1

3 5

4 5

7 6

Run 1: Run 2:



Disc-based index construction cont.

• Phase III
• Merge sorted temp files (2-way, multi-way)

termID docID

1 1

1 5

2 2

...

termID docID

1 7

2 4

2 8

...

Run 1:

Run 2:

termID docID

1 1

1 7

Temporary set:

Output
buffer



Disc-based index construction cont.

• Phase III
• Merge sorted temp files (2-way, multi-way)

termID docID

1 5

2 2

...

termID docID

1 7

2 4

2 8

...

Run 1:

Run 2:

termID docID

1 5

1 7

Temporary set:

Output
buffer



Disc-based index construction cont.

• Phase IV
• Read all pairs for a given term

• Construct a posting list (compress it)

• Write it to file

termID docID

1 1

1 5

1 7

...

Output 
buffer:

termID docFr docID docID docID docID

1 3 1 5 7 ...

...



Disc-based index construction cont.

• Pro 
• Scalable

• Con
• Not fast as memory-based approach

• Requires twice the amount of disk space as the size of original 
text



Size of index without compression

• Dictionary – 5.8 MB

• Posting lists – 3.7 GB

• Documents – 400 MB

Approximately 90 % of original size.



Dynamic indexing

• Untill now, we assumed that collections are static

• New documents need to be iserted

• Documents are deleted and modified

► Postings updates for terms already in dictionary

► New terms added to dictionary



Dynamic indexing

• “Big” main index

• New documents go into „small“ auxiliary index

• Search across both, merge results

• Deletions
• Invalidation bit-vector

• Periodically, re-index into one main index



Index Compression



Index Compression

• Why?
• Less disc space consumption

• Compression ratios of 1:4 are easily achievable

• Increased use of caching
• Usually, we are caching frequently used parts of posting lists into the 

memory

• With compression we can fit a lot more into memory

• Faster transfer of data from disc to memory
• Reduction of I/O

• It is usually faster to transfer compressed posting list and then to 
decompress it, rather than transferring uncompressed posting list 



Posting list compression

• DocIDs are ordered in posting list
► Replace DocID by the interval difference DocIDi – DocIDi-1

• Then encode interval difference – fewer bits for smaller, 
common numbers

... docID docID docID docID ...

... 256454 256460 256475 256478 ...

... ΔdocID ΔdocID ΔdocID ...

... 6 15 3 ...



Compression techniques

• VByte – Simple and good, but we can do better

• Elias‘ Gamma/Delta Code, Rice Coding, Golomb Coding 
– good compression for very small numbers, but slow

• Simple9 (Anh/Moffat 2001), PFOR-DELTA (Heman 2005) –
compression done in chunks – more numbers at a time



Var-Byte compression

• Simple byte-oriented method for encoding data
• If < 128, use 1 byte (highest bit set to 0)

• If < 128 × 128 = 16384, use 2 bytes (first highest bit 1, the other 0)

• If < 128 × 128 × 128, use 3 bytes (first highest bit 1, second 1, last 0)

• Example: 14169 = (110 × 128) + 89 = 11101110 01011001



We covered

•What is inverted index

• Simple system overview

• Index construction

• Compression



Thank You.

Questions?


