Do not write anything here！Write down your personal identifi－ cation number（učo）only．When doing so，follow the digit tem－ plates please．

fixed point combinators

In the lecture，you have seen a proof that $\boldsymbol{Y}:=\lambda f \cdot(\lambda x . f(x x))(\lambda x . f(x x))$ is a

Question 1
10 points fixed point combinator．Prove that

$$
\boldsymbol{D}:=\lambda f .(\lambda x y . f(x x y))(\lambda x y . f(x x y))(d r \text { a } g o n)
$$

（where \boldsymbol{D} stands for „Dragon＂）is also a fixed point combinator．

Room：
Coordinates：

三 극

Do not write anything here！Write down your personal identifi－ cation number（uc̆o）only．When doing so，follow the digit tem－ plates please．

Church numerals

In the lecture you have seen the following terms for multiplication and addition

Question 2
10 points （for Church numerals）：

$$
\begin{gathered}
\text { plus }:=\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x) \\
\text { times }:=\lambda m \cdot \lambda n \cdot \lambda f \cdot m(n f)
\end{gathered}
$$

a）Show that times $\underline{3} \underline{4}$ evaluates to $\underline{12}$ ．
b）Give an alternative definition of the term times using plus．

Name：
Room：
Coordinates：

 sheet

Do not write anything here！Write down your personal identifi－ cation number（učo）only．When doing so，follow the digit tem－ plates please．
simply typed lambda calculus λ^{\rightarrow}
Lists can be easily added to the simply typed lambda calculus $\lambda \rightarrow$ ．Here is the

Question 3

12 points additional syntax（note that these lists are parameterized by the type of elements T）：

$\mathrm{t}::=$		terms
	nil［T］	empty list
	cons［T］t t	list constructor
	isnil［T］t	test for emptiness
	hd［T］t	head of a list
	$\mathrm{tl}[\mathrm{T}] \mathrm{t}$	tail of a list
$\mathrm{v}::=$		values
	nil［T］	empty list
	cons［T］v v	list constructor
$\mathrm{T}::=$		types
	List T	type of lists

a）You task is to write down the typing rules for lists（one has been provided for your convenience）：
（5 rules，including the one provided）

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}}{\Gamma \vdash \operatorname{cons}[\mathrm{~T}] \mathrm{t}_{1} \mathrm{t}_{2}: \text { List } \mathrm{T}}(\mathrm{~T}-\mathrm{CoNs})
$$

Do not write anything here! Write down your personal identification number (učo) only. When doing so, follow the digit templates please.
(continuation of the previous sheet)
b) Also write down the evaluation rules for lists, using the call-by-value semantics (again, the first one has been provided for you convenience):
(9 rules, including the one provided)

$$
\frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}^{\prime}}{\operatorname{cons}[\mathrm{T}] \mathrm{t}_{1} \mathrm{t}_{2} \rightarrow \operatorname{cons}[\mathrm{~T}] \mathrm{t}_{1}^{\prime} \mathrm{t}_{2}}(\mathrm{E}-\mathrm{CoNs} 1)
$$

Do not write anything here！Write down your personal identifi－ cation number（učo）only．When doing so，follow the digit tem－ plates please．

System HM

In the System HM，prove that the term

Question 4
10 points

$$
\text { let } i=\lambda x . x \text { in } i i
$$

is well typed（and give its type）．

